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Abstract 

The special requirements of rotor dynamics engineering are illustrated by means of different examples of 
turbomachines. The properties of magnetic bearings and the more common fluid film bearings are pointed out in 
the examples of two turbo compressors. The importance of the correct consideration of bearing support properties 
is shown for a turbine generator train. The impact of seal forces is demonstrated for the turbo compressor supported 
on fluid film bearings. Two of the considered seals are honeycomb seals. Bearings and seals can have frequency 
and speed dependent characteristics; complex supports have non-negligible couplings between bearings and are 
frequency dependent as well. The consequences of the coupling of lateral and torsional vibrations in gears are 
illustrated for a gear compressor with three pinions. All examples have a practical background from 
troubleshooting and engineering work, although they do not exactly correspond to real cases. 

Nomenclature  

B Width of bearings 
d Damping coefficient of bearings or seals 
D Diameter of bearings 
 Damping ratio 
f  Frequency 
k Stiffness coefficient of bearings or seals 
m Pad preload of fluid film bearings 

1   Introduction 

Rotors are structures with special properties due to their rotation (causing e.g. the gyroscopic effect), due to 
their bearings (fluid film bearings, magnetic bearings) and in many cases due to surrounding fluids (seal forces). 
Therefore, rotor dynamics requires special engineering tools although the structural properties of the rotors and 
their supports could well be modeled by any general finite element program.  

Tools for rotor dynamics and bearings have been developed for many years. Nordmann, Nelson and Gasch  
introduced the finite element method to rotor dynamics (see [1] to [4]). Glienicke and Lund developed the basics 
for fluid film bearings (see [5] and [6]), which were further refined by many researchers. 

The recent development of magnetic bearings, which are now more and more introduced in industrial 
applications of turbomachines, required an extension of existing rotordynamic tools to model the specific 
characteristics of this bearing type and the controllers. Spirig et al. [7] give insight into the control design process 
for three practical examples. This process has been further developed in the meantime and standards for design 
goals have been created as explained by Schmied et al. [8]. 

The bearing properties and resulting rotor dynamic behaviors for support on classical tilting pad fluid film 
bearings and magnetic bearings are illustrated for two turbo compressor examples. 

The impact of the dynamics of a casing as bearing support is shown for the example of a turbine generator train 
with fluid film bearings. 

The interaction of fluid forces in seals with rotors has been investigated by Nordmann [9] and Childs [10] to 
name two of the most well-known researchers in this area. A few years ago, fluid forces were mainly modeled as 
stiffness and damping coefficients. Recently it is more and more recognized thanks to more sophisticated analysis 
tools and measurements, that this approach is too restrictive. Honeycomb seals for example can have more complex 
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frequency dependent characteristics as shown by Kleynhans et al. [11]. Still, the rotor dynamic tools for the 
consideration of fluid forces are not as established as for fluid film bearings and strongly simplified engineering 
approaches are frequently used, for example the procedure described in the standard by the American Petroleum 
Institution [12] as stability level I analysis. In this paper an approach is described for a high-pressure turbo 
compressor, which could be used as stability level II analysis. 

 In train arrangements with gears the lateral and torsional vibrations are coupled. The influence of this 
coupling, which is not considered in standard analyses, is shown for a gear compressor.  

All analyses in this paper were carried out with the general rotor dynamic program MADYN 2000. Its 
capabilities are described in detail by Schmied in [13]. The fluid film bearing module in MADYN 2000 is based 
on more than 30 years research in the German consortium FVV (Forschungsvereinigung 
Verbrennungskraftmaschinen / Research Association for Combustion Engines). Fuchs [14] comprehensively 
describes the status at the beginning of the century, which has been further developed, but basically is still valid 
today. The magnetic bearing module has been developed over several years based on practical needs starting with 
the industrial applications of magnetic bearings in turbo compressors. The developers of the module were involved 
from the very beginning of this area. Early applications are described by Schmied and Nijhuis et al. in [15] and 
[16]. 

2   Description of the examples 

Four rotor arrangements are considered in this paper, which are described in the following chapters. 
The rotor structures are modeled with finite elements according to the Timoshenko beam theory considering 

the shear deformation and gyroscopic effects as described by Nordmann [1], Nelson et al. [2], Gasch [4], Lund et 
al. [6] and Krämer [17]. Each cross section can consist of superimposed cross sections with different mass and 
stiffness diameter as well as different material properties. The contours shown in the rotor plot represent the 
resulting mass diameter with the density of the basis cross section, which is normally steel. 

Stiff shrunk parts on the rotor, e.g. impellers, can be modeled as rigid parts. They are represented by mass, 
equatorial and polar moments of inertia. In the rotor plots they are drawn as equivalent disks. In case only the mass 
is given and no moments of inertias they are drawn as spheres. These parts can be fixed rigidly to the shaft, or if 
necessary, flexibly for example to consider disk or blade vibration modes. To model a blade mode, it may be 
necessary to split the mass into a rigidly mounted mass and a flexibly mounted mass representing the effective 
modal mass. 

Several analytical results of the examples will be shown: Campbell diagrams, i.e. damped natural vibration 
modes at different speeds, and the response to unbalance loads. The damping in the Campbell diagrams is described 
as damping ratio, which can easily be transformed to an amplification factor in resonance. The damping from the 
Campbell diagram is unequivocal and accurate in contrast to the damping from an unbalance response received by 
the half power width method, as it is described in for example in the standard American Petroleum Institution [12]. 
The stability can also be assessed by the damping ratio; an unstable rotor has a negative damping ratio. 

2.1 Turbo compressor supported on fluid film bearings with seals 

The model of the turbo compressor is shown in figure 1. Its maximum speed is 12’000 rpm and the total rotor 
weight 220 kg. This example will also be used to demonstrate the impact of seal fluid forces. The location of the 
two considered labyrinth seals and honeycomb seals with the highest gas density are shown in the figure. 

 
 

 

Figure 1: Compressor rotor on fluid film bearings with seals. 

The geometry of the 4 tilting pad bearings is illustrated in figure 2. The bearing has a load between pads 
arrangement. The pads have a central support. 

 

Labyrinths Honeycomb seals 
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Figure 2: Radial fluid film bearing geometry and clearance plot. 

 

2.2 Turbo compressor on magnetic bearings 

The model of the turbo compressor is shown in figure 3. Its maximum speed is 12’600 rpm and the total rotor 
weight 550 kg. The bearings are represented by their sensor and actuator. The triangle in the plot indicates the 
actuator location, the bar the sensor location.  

 

 
Figure 3: Turbo compressor on magnetic bearings. 

2.3 Turbine generator train 

The model of the turbine generator train is shown in figure 4. Its nominal speed is 3’000rpm. Turbine and 
generator are supported on fixed pad fluid film bearings. 

 

 

Figure 4: Turbine generator shaft train. 

The turbine rotor casing is considered as a state space model, which is gained from the natural modes of a finite 
element model of the casing. The method is described by Krüger in [18]. In the present case ANSYS was used to 
receive the state space matrices in a so called spm-file, which can directly be imported to MADYN 2000 as 
explained by Schmied in [19]. When importing the state space matrices to MADYN 2000 a structural damping 
can be defined, in our example it is 1%. The ANSYS system does not have any damping. The amplitudes of the 
transfer functions of the coupled turbine casing can be seen in figure 5. 

Each column in figure 5 corresponds to the location/direction of an excitation and each row to the 
location/direction of the response. Locations are the turbine NDE (left, STA 4) and DE (right STA 100) bearings 
and directions are 2 (vertical) and 3 (horizontal). The couplings of the casing between the two bearings are rather 
strong, i.e. their amplitude has the same order of magnitude as the amplitude of the direct transfer functions on the 
diagonal, whereas the couplings between the directions is weak. 

The generator and exciter have simple spring, mass supports. Each support has a resonance in horizontal and 
vertical direction in the range of three times operating speed. Such support models are used in traditional rotor 
dynamic analyses. In case a support has only one relevant resonance in each direction and the coupling between 
supports is negligible, such a model is sufficient. 

For the turbine such a support model was also used originally. It proved to be insufficient as we will see later 
in this paper. 
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Figure 5: Transfer functions of the turbine casing. 

In a shaft train consisting of two rotors with two bearings each and coupled with a solid coupling the static 
bearing load and thus the bearing characteristics depend on the alignment, which may change due to thermal 
growths of supports and casings. MADYN 2000 allows static analyses for different alignments and finding an 
optimal alignment for minimum forces in the coupling flanges. In this example the influence of different 
alignments is relatively small due to the high weight of the rotors and the flexibility of the solid coupling. 

2.4 Gear compressor 

The model of the gear compressor consisting of a bull gear and three pinions is shown in figure 7. All rotors 
are supported on fluid film bearings, the pinions on tilting pad bearings and the bull gear on cylindrical bearings. 
The meshing is modelled as explained in the figure next to the model plot. The spring is aligned with the tooth 
contact force. Its direction is indicated by the magenta line. 

          
Figure 6: Gear compressor with explanation of the gear mesh model. 
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3   Rotor dynamic behaviour with fluid film bearings and magnetic bearings 

3.1 Rotor on fluid film bearings 

The stiffness and damping coefficients of the fluid film bearings in the 2-3 coordinate system of figure 2 are 
shown in figure 7 together with the static position in the bearing at different speed (Gümbel curve). Due to the pad 
arrangement the bearing is isentropic, i.e. the coefficients in 2- and 3-direction are equal. Moreover, there are no 
cross-coupling terms. The coefficients of the two bearings are almost the same. For this reason, the results of only 
one bearing is shown. 

 

 

Figure 7: Stiffness and damping coefficients of the fluid film bearing with Gümbel curve. 

The coefficients of fluid film bearings are load dependent (the load in the present case is the rotor weight) and 
speed dependent. However, for tilting pad bearings they can additionally be frequency dependent, i.e. the stiffness 
and damping at a certain speed for vibrations with non-synchronous frequencies is different. This effect can be 
considered by a full model of the tilting pad bearing, i.e. keeping the tilting angles in the bearing model and not 
reducing them, what is normally done under the assumption, that tangential pad forces are negligible. A full model 
can be represented in state space form with the rotor displacement and velocities as inputs, the radial forces as 
outputs and the pad tilting angles and their derivatives in time as states. More details are described by Schmied et 
al. [20]. The non-synchronous coefficients of the same bearing at the nominal speed of 210 rps are shown in figure 
8. The synchronous coefficients are highlighted with data tips. They correspond to the coefficient in figure 7 at 
210 cps. For lower frequencies at this speed the stiffness increases and the damping decreases. These trends tend 
to reduce the damping of modes in the sub-synchronous frequency range. 

 

 

Figure 8: Non-synchronous stiffness and damping coefficients at nominal speed of 210 rps. 

The Campbell diagram (natural frequencies and damping ratios as a function of speed) calculated with the full 
model i.e. correct non-synchronous characteristics is shown in figure 9. The dashed line for the damping is for 
mode 2 calculated with bearing coefficients neglecting the frequency dependence, i.e. in the traditional way. It can 
be seen, that the damping with the correct non-synchronous characteristics is indeed lower at nominal speed, as 
expected from the trends in figure 8. The damping reduces from 10.6% to 8.2%. 
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Figure 9: Campbell diagram (dashed line damping mode 2 with syn. coeff.) and mode shapes in critical speeds 

The mode shapes in critical speeds can also be seen in figure 9 in compact form. MADYN 2000 has another 
3-dimensional presentation of modes. In the compact form they are shown in two planes at the instant when the 
maximum deflection occurs. The first plane is determined by the maximum deflection and the rotor axis and the 
second plane is perpendicular to this plane. The first plane is indicated by the bold line in the 2-3 coordinate system 
and the second plane by the thin line. The whirling direction is also indicated in the figure. A circular forward 
whirling orbit has the value +1 and a circular backward whirling mode the value -1. Elliptic orbits have values 
between 0 and +1 and -1 respectively. 

The rotor runs clearly above its first bending. The tilting mode is very close to the nominal speed. It has a large 
damping ratio of more than 30%, thus this resonance is not a problem. Standards such as API allow running in a 
resonance, if the damping is above 20% corresponding to an amplification factor smaller than 2.5. 

3.2 Rotor on magnetic bearings 

In figure 10 the bearing characteristics of the magnetic bearings are shown as transfer functions describing the 
relation between the rotor displacement at the sensor and the actuator force. The characteristics are highly 
frequency dependent. However, they do not change with speed. The hardware consisting of sensor, amplifier and 
actuator, the controller and digitization effects are included in the transfer functions. The hardware causes a 
continuous phase lag with increasing frequency, i.e. a reduction of damping. The ranges with bold lines indicate 
where the bearings have a damping characteristic (phase angles between 0 and 90 degree or below -180 degree). 
The eigenvalues (natural frequency and damping ratio) of the complete system (bearing and rotor) at maximum 
speed are also shown in figure 10. The transfer functions are determined to a large extent by the controllers. The 
design of a controller requires extensive engineering effort. It is described for example by Schmied et al. [8]. Goals 
of the design are to receive a robust, stable system with enough damping in the speed range. Robustness must be 
fulfilled against system changes (the model deviates to some extent of the real system) and against noise in the 
magnetic bearing system, which requires the gain to remain below a certain level. 

The mode shapes in two perpendicular planes as described for figure 9 are shown in figure 11. The shapes 
move on circles, because the bearings are completely isotropic.  

It can be seen, that all modes below maximum speed are well damped and that all modes in the higher frequency 
range are stable. Some modes are not determined by the rotor but by the controller, which augments the system 
and causes additional modes. 

Compared to the rotor on fluid film bearings the behaviour is quite different. There are two pairs of forward 
and backward whirling well damped rigid body modes at low frequencies. They appear due to low bearing stiffness 
in this frequency range, which can be recognized in the transfer function in figure 10. The transfer function has a 
value well below 108 N/m. This is lower than the stiffness of the fluid film bearing of the other rotor, despite the 
fact, that the rotor for fluid film bearings is considerable smaller. The first bending modes occur at 155Hz and 
162Hz, respectively. Their shape corresponds more to a free - free bending mode shape. In the present case this 
mode is within the speed range and the damping of more than 20% allows running in resonance. 

 

with synchr. coefficients 
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Figure 10: Magnetic bearing transfer functions and eigenvalues (damping and natural frequencies) 

 

 

 

Figure 11: Natural modes nominal speed. 

4. The influence of bearing supports 

The Campbell diagram of the turbine generator shaft train including the turbine casing and the spring mass 
supports for the generator and exciter bearings is shown in figure 12. The number of modes is huge, because the 
system has many turbine casing modes. Some of the turbine modes couple with the rotor, some not. In figure 12 
two examples of modes in critical speeds are shown: one mode which is mainly a casing mode, and another coupled 
rotor casing mode. The casing mode has no relative displacement between rotor and casing displacement in 
contrast to the coupled mode. Casing modes are also characterized by their damping of 1%, which is the structural 
casing damping. Casing modes, which couple with the rotor, have a different damping; normally it is higher, 
because some of the bearing damping is transferred.  

The Campbell diagram of a coupled rotor casing systems can be complex. Unbalance response analyses are a 
big help to find the relevance of modes and their resonances. Some of the casing modes for example may be 
difficult to excite, due to their shape or due to their big effective mass. The relative vibrations at the turbine bearings 
of a response to an unbalance are shown in figure 13 for the model with the complex casing characteristics and a 
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model with simple bearing support. A comparison of the two responses reveals the importance of a correct casing 
model. The resonances are completely different. The traditionally still widely used simple supports are not always 
suitable. 

 

 

Figure 12: Campbell diagram with two exemplary critical mode shapes (dominated by casing and coupled).  

 

 

 

Figure 13: Unbalance load and response (relative vibrations at turbine bearings). 

5. The impact of seal forces 

The tangential and radial seal forces of the labyrinths of the rotor in figure 3 for a circular unit shaft orbit are 
shown in figure 14. They are the forces from the seal on the rotor, i.e. positive tangential forces destabilize forward 
whirling modes and positive radial forces are in the same direction as the orbit radius, i.e. they bring the rotor out 
of centre and thus soften the system.  

The labyrinth seal forces were calculated with a Navier Stokes solver described by Weiser in [21]. The 
tangential as well as radial force show a slight curvature caused by inertia effects. To include them in the model, 
mass coefficients are necessary. In the present case the inertia effect is small. 

Complex casing characteristic 

considered according to figure 5. 
Simple spring mass support. 
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Figure 14: Radial and tangential labyrinth seal forces 

The frequency at which the tangential force is zero, the so-called swirl frequency, allows a rough assessment, 
which rotor modes are destabilized by the seals: Forward whirling modes with lower frequencies will be subjected 
to a damping reduction. For the labyrinth seals this frequency is beyond the shown frequency range to 300Hz. 

The honeycomb seal forces in figure 15 for circular backward (neg. frequency) and forward (pos. frequency) 
orbits are strongly frequency dependent. They were calculated according to the method described by Kleynhans 
in [11] and cannot be simply modelled by stiffness, damping and mass coefficients. They must be modelled by 
transfer functions in a similar way as magnetic bearings. 

The swirl frequencies of the balance piston and interstage seal are around 50Hz and 70Hz, respectively. 

 

Figure 15: Radial and tangential honeycomb seal forces 

The eigenvalues of the system with and without the seals are shown in figure 16. The seals are considered in 
two steps for a better interpretation of the results. In a first step only the labyrinth seals are considered and in a 
second step all seals. 

The labyrinth seals mainly influence the forward and backward whirling first bending mode. The damping of 
the forward mode is decreased, of the backward mode increased. The other modes are almost not affected. 

The impact of the honeycomb labyrinth seals is very big in a frequency range up to 250Hz. The system with 
honeycomb seals is well damped. This is due to the large stiffening effect at higher frequencies (negative radial 
force) and the relatively low swirl frequency. 

 

 

 

Figure 16: Eigenvalues at nominal speed without and with consideration of seal forces 

Without seals as in the 
Campbell diagram in figure 10 

Damping reduction 
of forward whirling With labyrinth seals 

With all seals 
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6. Coupling of torsional and lateral vibrations in gears 

The coupling of lateral and torsional vibrations in gears is normally not considered. An additional coupling 
with axial vibrations can also occur. Lateral torsional coupling is of interest for the following reasons: 

Due to the lateral vibration component the radial bearings can influence the damping of the torsional vibration 
modes. Normally they add damping, but they can also destabilize as reported for example by Viggiano et al. in 
[22]. This reference also contains a comparison of measured and calculated stability thresholds, verifying this type 
of analysis. 

Lateral excitations such as the unbalance can excite torsional vibrations and vice versa torsional excitations 
excite lateral vibrations. By means of a coupled model this can be simulated. 

The natural vibration modes of a lateral torsional coupled model can be different from those of the decoupled 
systems. For our example this is shown in figure 17, where a selection of modes of the standalone pinion 1 are 
shown together with modes of the coupled system, which are dominated by this pinion. 

Some modes practically do not change due to the coupling as the mode at 118 Hz. On the other side completely 
new modes can appear as the mode at 173 Hz and modes can couple as the torsional mode at 345 Hz and the lateral 
mode at 419 Hz of the pinion, which are combined to a coupled lateral torsional mode at 360 Hz. 

 

 

 

Figure 17: Lateral and torsional modes of pinion 1 of the coupled and uncoupled system 

7   Conclusion 

The requirements of a modern tool for rotor dynamic analyses are demonstrated for four examples, covering 
different types of bearings, the influence of casing dynamics, seal forces acting on rotors and coupled vibrations 
as they can occur in gears. 

Some of the requirements are new due to new bearing technologies (e.g. magnetic bearings) or new research 
results (e.g. the frequency dependence of seal forces and tilting pad bearings). In both cases the forces caused by 
rotor displacements are strongly frequency dependent and cannot be simply modelled by stiffness, damping and 
mass coefficients. 

To cover these needs MADYN 2000 uses state space representation for frequency dependent bearings. State 
space matrices are also used for the import of complex support structures. For support structures the input to the 
system are forces and the outputs displacements and velocities, whereas for the bearings the inputs are 
displacements and velocities and the outputs forces. 

f = 118Hz 

D = 5.0% 

whirling dir. +0.44 f = 118Hz 

D = 5.0% 

whirling dir. +0.52 

f = 173Hz 

D = 8.3% 

whirling dir. +0.1 

f = 360Hz 

D = 4.7% 

whirling dir. +0.04 
f = 345Hz 

D = 0.0% 

f = 419Hz 

D = 33.7% 

whirling dir. +0.21 
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