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ABSTRACT

A method to calculate spiral vibrations of a multi
bearing rotor on the basis of the Finite Element method
is described. In order to verify the method it is
applied to a simple flexible rotor with two concentrat-
ed masses. In addition, a practical example of a multi
bearing turbine generator is investigated, considering
two effects that might cause spiral vibrations: fric-
ti on in journal bearings and at sliprings.

NOMENCLATURE

c constant added heating efficiency
d diameter

damping coefficient
D modal damping factor
Q matrix containing damping and gyroscopic co-

efficients
f frequency
f vector of the exciting forces
T unit matrix

~ stiffness matrixK stiffness matrix of the rotor alone
T length
m mass

mB mass of a brush
M mass matrix
n rotational speed

number of brushes per circuit
n number of brushes per length
Nl number of degrees of freedom of the system
p proportionality factor for the added heating

efficiency, if it is proportional to the deflec-
tion of the shaft

p* proportionality factor for the added heating
efficiency, if it is is proportional to the
radial acceleration of the shaft

f matrix containing the parameter for the added heat
q proportionality factor for the eliminated heating. efficiency
Q heating efficiency
Q matrix containing the parameter for the eliminated

heat
s oil film thickness
t time
T period of the spiral to complete 3600
T matrix describing the linear relation between the

thermal deflections of all coordinates and the
translatory coordinates at the hot spot

x coordinate for translatory deflections
x vector of all coordinatesx vector for the thermal deflections
öl real part of the "thermal" ei genva 1ue
~ distribution factor for the added heat
1 coordinate for rotational deflections

circumferential angle
A "thermal" eigenvalues
V' imaginary part of the "thermal" eigenvalue
~ friction coefficient
~ temperature
~ radius of a circular orbit
~T thermal deflection of anode in direction of its

maximum
't' shear stress
Q angular velocity of the shaft

subscripts
h horizontal direction
v vertical direction
hs location of the hot spot
T thermal deformation

1. INTRODUCTION

Spiral vibrations are often observed in rotors with
seal rings, sliprings or journal bearings as well as in
connection with shaft rubbing.

In all cases the rotor vibration may induce a hot
spot on the surface of the rotor due to friction and
cause a thermal bow. Thus the vibration changes and the
hot spot and the thermal bow move gradually around the
shaft, decreasing or increasing in magnitude. Fig. 1
shows the polar plot of a vibration observed on the
bearing of a 600 MVAturbine generator resulting from
the described effect.
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Fig. 1 Polar plot of a measured vibration signal for
the ca se of a spiral vibration.

An increasing spiral must be prevented, either by
avoiding components, where hot spots may arise or by
making sure that hot spots lead to a decreasing spiral
vibration. The latter measure is in many cases the only
solution since journal bearings, sliprings and seal
rings can not be replaced easily. It requires however
the knowledge of the conditions when a spiral increases
or decreases.

Spiral vibrations, also called Newkirk effect, have
been investigated in the past by A.D. Dimarogonas
(1973), W. Kellenberger (1977, 1978, 1979), and other
investigators, which are mentioned in the latest paper
of W. Kellenberger, where a brief review about earlier
investigations is given. W. Kellenberger describes the
effect by linear equations whereas A.D. Dimarogonas
obtains nonlinear equations. Both authors investigate
simple models of rotors.

This paper for the first time deals analytically
with a multi bearing turbine generator. The procedure
how to consider the thermal effects is based on Kellen-
berger (1978, 1979). The mechanical equations of motion
are extended by a linear thermal equation, which is
coupled to the mechanical equations. The necessary
extensions in the global matrices of the original
Finite Element model of the rotor can be made by usin~
the Finite Element progr~mMADYN(H.D. Klement (1982)),
where the user can define values to be added in an
arbitrary place in the global matrices of the struc-
ture.

The method is verified by applying it to a simple
flexible rotor with two masses, which has been investi-
gated earlier by W. Kellenberger (1978).

The following two paragraphs describe how sliprings
and journal bearings can cause hot spots.

The effect of these hot spots on areal machine - a
multi bearing turbine generator - is studied at the end
of this paper by applying the new method.

Fig. 2 Orbit of the shaftcenter at the sliprings

2. HOT SPOTS DUE TO SLIPRINGS

Fig. 2 shows the orbit of the center of shaft Wat
the slipring of a rotor. The brushes are pressed
against the surface of the ring by springs, which have
the property of causing apressure not depending on the
deflection r of the shaft.

The pressure however may change due to the inertia
of the brushes. Brushes in direction of the radial
acceleration r of the shaft are pressed by Im rl
stronger, those on the opposite side by the s~me amount
weaker against the shaft. Since the orbit and the revo-
lution of the shaft have the same period, the pressure
at the point H of the surface is always higher than at
the point HO. Thus the friction at H is larger than at
HOand a temperature gradient arises from H to H'.

The pressure of the brushes on the shaft may also
change due to the friction of the brushes in their
holder. This effect however is not considered here.

3. HOT SPOTS DUE TO JOURNAL BEARINGS

Fig. 3 shows very simplified the distribution of
the oil film velocity at the two points 1 and 2 of the
journal for two positions of the center of the journal.
The dashed lines show the situation if the center of
the journal has its static position W for a certain
rotational speed whereas the solid liRes show the situ-
ation if the center of the journal is in the point Wof
its orbit.

Compared to the situation in W the gradient of the
velocity of the oil film on the suPface of the journal
increases in point 1 and decreases in point 2. This
causes a higher friction in point 1 and a lower fric-
tion in point 2 compared to the static position,
because the shear stress is proportional to the gradi-
ent of the velocity. Since the orbit of the center of
the journal and the revolution of the shaft have the
same period, the friction in point 1 is always higher
and the friction in point 2 always lower compared to
the frictions in the static position. Thus a tempera-
ture gradient arises from point 1 to 2.
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Fig. 3 Profiles of the oilfilm velocities at two
points of the journal.

4. COMPUTATIONAL APPROACH

The equation of motion of the Finite Element model
of a multi bearing turbine generator has the form

Mi + I2x.+Kx.=!(I)

where M is the mass matrix
D is the matrix containing damping and gyroscopic- coefficients and
K is the stiffness matrix.

K and Ö are non symmetric, since they contain the damp-
Tng and stiffness coefficients of the journal bearings.

If the rotor is thermally deformed the equation of
motion for coordinates x relative to the static posi-
tion of the undeformed rotor is

where KRis the stiffness matrix of the rotor alone
- (without pedestals and journal bearings) and
!T is the vector describing the thermaldeformation.

We assume that the coordinates of the thermal

deformation ~T linearly depend on the thermal deflec-
tions ~Ths ?f the shaft at the location of the hot
spot, tnCit lS

~T =I~Ths , (3)

~Ths=(~Th .ltTv)T , (4)

where x hand x are the thermal translatory deflec-
tions ih horizoh{al and vertical direction at the loca-
tion of the hot spot. The matrix T is derived from the
thermal deformation of the rotor,-which is determined
by a static calculation with thermal loads, that is a
temperature gradient in horizontal direction for the
first column of T and a temperature gradient in verti-
cal direction for the second column.

The change of the thermal deflection is described
by the following equation

, ,.,
iThs =\p 0 lths,- ~ ~Ths I I (5)

.-+ .
Q Q-

IV ...,,,, T
where ~s = (xh,xv) is the vector of the trans la toryshCift deflections at the location of the

.+ hot spot,
g is the added heating efficiency and
Q- is the eliminated heating efficiency.

Equation (5) has been deduced in detail by Kellen-
berger (1978 and 1979). The coordinates in (5) are
rotating in contrast to the coordinates in (1), (2) and
(3), which are stationary.

In (5) the added heat is proportional to the
deflection of the shaft at the location of the hot
spot. This is a good approximation for the effect in
the journal bearing. In ca se of the effect at the
sliprings however, the added heat is proportional to
the radial acceleration of the shaft at the location of
the hot spot. For a stationary vibration we may write
for the radial acceleration

~s =- 02 ~s (6)

For a spiral vibration, which is not stationary, we
also assume (6), since the changes are very slow.

Introducing a new proportionality factor p* for
this case

(1)
(7)

equation (5) may be written as follows:

':'" * 3"'" ,..,
~Ths = -p 0 ~hs - q ~Ths (8)

Transforming equation (5) into stationary coordinates
XTh xTv' xh' Xv yields

(2)

or by using matrices and vectors

1XThs+..f ~s + Q..ltThs = Q (10)

Substituing (3) into (2) and extending (2) by (10)
yields

where P is a 2 x N matrix (with N as the dimension of
(2)), which has the coefficients of P at the columns of
the translatory coordinates ~ of the hot spot.

In case we use equazion \ö' instead of (5) p must
be substituted by -p*!2. .

To calculate spiral vibrations the original Finite
Element model of the rotor represented by equation (1)
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must be extended by introducing the two extra degrees
of freedomx and xT . The additional coefficients
must be adde!hto the ~lobal matrices. This possibility
is provided for the input of the program MADYN(H.D.
K1ement(1982».

Fromequation (11) one could ca1cu1ate the time
history of ! by a time step method. The polar plot of
the time history of each coordinate would be a spiral
either increasing or decreasing in magnitude. This cal-
cu1ation however wou1drequire a great computationa10
effort, since the period of a spiral to complete 360
is very 10ng for rea1istic examp1es.That is why the
computation would have to be done for quite a 10ng
period of time unti1 one cou1d tell whether a spiral
increases or decreases in magnitude.

This information however can also be extracted from
the eigenvalues of equation (11). Their calculation
requires much less computationa1 effort. The program
MADYNprovides two methods to determine comp1exeigen-
values: The Hessenbergmethod and an inverse vector
iteration.

Equation (11) has 2 (N+1) eigenvalues. Since real-
istic values for p and q_4re very small - p is in the
or~~r of magnitude of 10 and q is in the range of
10 CJ where w is a representative natural
frequen8y of the gtructure (see Kellenberger (1978») -
a set of 2N eigenva1ues are practica11y the sameas
those of equation (1) representing the structure. The
additional two eigenva1ues are a conjugate complex pair

Ä =a:!:iv (12)

which is called thermal eigenva1ue in the fo110wing.
The imaginary part v of this eigenvalue is almost

equa1 to D. . This can be exp1ained mathematica11y by
the thermal equation (9). For p = 0 this equation is
decoupled from the structural equation and has the
eigenvalues 7\ =-1.:!:in. . For p ~ 0 the eigenva1ue
changes due to the coupling to the structure. The
change of the imaginary part is only smal1, since p is
very sma11, hence the coupling is weak.

The change of the real part however is substantial,
becauseq is also very smal1.

It is obvious that the thermal eigenva1ue must have
an imaginarypart almost equa1 tol1 , since a constant
therma1 bowof the shaft rotates with 11 in a station-
ary coordinate system. The bowhowevermovesgradual1y
around the shaft. That is why V is slightly different
from .n. .

The difference between '4/ and n tells us howfast
the bow moves around the shaft respectively at which
speed the spiral is traced. The period to comp1ete 3600
is

T = 21tIIv-Q I (13)

The direction of the revolution is as follows:

4.J>n samedirection
~<n. opposite direction of the rotor's revolu-

tion.

The real part d. of the thermal eigenvalue '" te11s us
whether the spiral increases or decreases in magnitude:

oe> 0, increasing magnitude
~< 0, decreasing magnitude. (14)

---------------

5. ASIMPLE EXAMPLE

In order to verify the methoddescribed in the pre-
vious paragraph, it is applied to the rotor in fig. 4.
The rotor has a flexible, mass1essshaft and two disks
of the mass m. It is assumed that the disks do not have
any momentsof inertia. The translatory movementsof
the disks are dampedby two dampers in horizontal and
vertica1 direction at each disco The heat is added at
the left mass. The added heat is proportional to the
deflection of this mass as indicated by the spring. W.
Ke11enberger (1978) has derived an approximate, analyt-
ica1 solution of the spiral vibration of the translato-
ry coordinates of node 2 of this model. This solution
can serve as comparison with the solution according to
our method.

Wemodel the stiffness property of the rotor by
massless beamelements. The coordinates of the model
for the vertical bending direction are shown in fig. 4.

The assumed shape fbr the thermal deformation due
to a hot spot at node 2 is shown in fig. 5. This shape
corresponds to Ke11enberger's assumption, that the
thermal def1ection of the right mass is one third of
the thermal def1ection of the 1eft mass.

If the thermal deformation in fig. 5 is in vertica1
direction, it can be described by the fo11owing vector:

( '(lv x2h f2v x3h 'f3v 'f4v )a

(-4/1 1 -4/(31) 1/3 4/(31) 4/(31))T (15)

The sameshape in horizontal direction can be
described in the same waywith the corresponding
coordinates. The elements of the vector in (15) are
used in the matrix I (see equation (3)).

In the fo11owing, the frequency

(16)

is used as a reference frequency as by Kellenberger.

Fig. 5 Assumedthermal deformation
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Fig. 4 Model of a simple rotor



The first two eigenfrequencies of the undamped
system without hot spot are

For the damping coefficient d and the
proportionality factor q. the following fixed values
are chosen as by Kellenberger:

d=0.1 mroO (18)

q = 10-3 roo (19)

(17)

The proportionality factor p and the angular __
velocity n. are varied. The following examples are Q
calculated:

Table 1 shows the calculated thermal eigenvalues and
the period T aC80rding to equation (13) for the spiral
to complete 360 . The period T in hours is calculated
by meansof n.= w./2" . where"o has the dimen-
sion l/min.. as follows:

T=

Introo -~/rool no 60

Table 1: Thermal eigenvalues of the calculated examples
and period T. n. = 1000 l/min

Example aJroO105

1 -5.7339

2 1.1499

3 -1.6850

4 1.7338

T[h]v/roO

0.39950

0.39947

1.19961

1.19960

0.033

0.031

0.043

0.042

The values for T. the direction of the spiral's revolu-
tion and the stability coincide with Kellenberger's
results. The direction of the spirals' revolution is
always against the rotor's revolution. since the values
for "lw. are smaller than the rotational speed .n./eJo.The
stability is assessed by the sign of ~/wo

6. ESTIMATINGTHE PROPORTIONALITYFACTORSp, p* AND q

In the previous paragraph. the same values as by
Kellenberger were chosen for the proportionality fac-
tors p and q. He estimated the values by comparing the
calculated results with observations in real machines.

In the following we try to derive approximate for-
mulas to calculate P. p* and q from the physical
effects described in paragraph 2 and 3. in order to
find out later (see paragraph 7). if these effects can
be responsible for the observed spiral vibrations in
the investigated real machine.

11"/2 11"
311'/2 211' ~

Fig. 6 Circumferential distribution of the added and
eliminated heating efficiency

(20)

For this purpose the term representing the added
heat in equation (5) respectively (8) is assumed to be
constant. This assumption can be made. because the
change of the vibration of the rotor is very slow and
because the change of the added heat during one revolu-
tion of the rotor can be neglected. since the thermal
time constants are much larger than the period of the
rotor's revolution.

With this simplification equation (5) respectively
(8) may.be written as follows

(21)

with fT as
the hot spot

With the
solution

the thermal deflection at the location of
in direction of its maximum.
initial condition PT(O)= 0 (21) has the

(22)

This function may be adapted to the time history of
the thermal deflection resulting from a calculation or
measurement. when the shaft is heated constantly at the
location of the hot spot.with a circumferential distri-
bution of the added and eliminated heat efficiency
according to fig. 6. which shows the difference to the
mean added heating efficiency.

The adaption can be done at two instants. From the
sta t i onary therma 1 defl ec t i on PT (t=...) fo 11ows from
(22)

(23)

From an arbitrary instant tl follows from (22) by
using c according to (23)

(24)

Equation (24) directly yields the parameter q. whereas
the parameter p. respectively p* must be extracted from
c. For this purpose we assurne that the orbit of the
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2) n = 0.4 roo . p = 1.235 10-3

3) n = 1.2 roo . p = 0.57 10-3

4) n = 1.2roo . p = 0.59 10-3



center of the shaft is a circle with the radius r. In
this case we may write for c

c=pOp
respectivley

c = _po 03 p

(25)

(26)

From these two equations the proportionality
factors may be determined, if the value of the radius
is known. It.has the value necessary to produce the
differencel1Q of the added and eliminated heating effi-
ciency assumed in the calculation of the time history
of the thermal deflection .

In ca se of a hqt spot at the sliprings, the
relation between AQ and p is found by calculating the
pressure forces of the brushes on the surface of the
ring due to the shaft acceleration as a function of S2t,
summing up the difference between positive and negative
forces, averaging it for one revolution of the shaft
and calculating the power of the friction due to the
averaged force difference. Since not all the friction
power necessarily enters the shaft as heating
efficiency, a distr~bution factor ~ is introduced. The
thus calculated IJ.Q - f relation is

1t ~Q/I

p=
ß n nLmB 03 11d

(27)

where l1iHl is the difference AQ per length,
n the number of brushes per circuit,
nL the number of brushes per length,
mBthe massof one brush)
p the friction coefficient,
d the diameter of the ring and
~ the distribution factor.

In ca se of a hot spot in the bearing, the change of
the shear stress b~ in direction of the deflection f,
which is equal to the change ~s of the oilfilm thick-
ness s, is approximated by the linear terms of a
Taylor extension of the function

't= cis (28)

where c is a constant. The mean oilfilm thickness for
the static position of the journal s is chosen as the
reference oilfilm thickness for the ßxtension. The con-
stant c can be determined from the known power loss P
in the bearing. Assuming a circumferential distributibn
of A~ according to ~ in fig. 6, calculating the dif-
ference between the positive and negative power due to
~~ by integration and again introducing a distribution
factor p yields the following relation

1t~Q

7. A PRACTICALEXAMPLE

Fig. 7 shows the rotor investigated in the
following consisting of a high pressure, an
intermediate pressure, two low pressures, a generator
and a rotor for the sliprings. The whole rotor has nine
bearings and a total length of 41.8 m. The external
support consisting of pedestals and foundation is
modelled by a mass and two springs in horizontal and
vertical direction.

sI iprings
8 t\ 97

R

Fig. 7 Model of the real machine

The rotor was very critical to problems with spiral
vibrations in the area of the slipring rotor. The
machine was very carefully checked with regard to any
rubbing of the rotor at the housing, so that this can
be ruled out as the reason for the trouble. The seal
rings also did not clamp. Remaining causes for the
problem could be hot spots in the bearing number 8 and
at the sliprings.

Fig. 8 and fig. 9 show the thermal deformation Qf
tse rotor for a constant temperature gradient of AJ.=
1 Cover the rotor diameter at the sliprings and in the
journal of bearing number 8. In both cases we have
large thermal deformations in the slipring rotor, which
is a certain explanation for the trouble in this part
of the rotor.

In case of the hot spots at the sliprings, we have
two points where heat is added to the shaft. The method
of calculation in paragraph 4 is described for just one
hot spot. Although the method could easily be extended
to more hot spots, we assume that the heat is added at
just one point (between the sliprings). This is just a
minor simplification, since the two sliprings are quite
close.

Fig. 10 and 11 show the stability chart for the two
cases. The threshold was determined by searching the
required p respectively p* for a certain q to fulfil
the condition 01"'0, with«as the real part of the ther-
mal eigenvalues (see equation (12)). This was done by
linear interpolation from two real parts« for two dif-
ferent pairs of values of p respectively p* and q. The
stability threshold determined in this way is exact
within the limits of the theory, since ~ linearly
depends on p and q as was found out by a number of
calculations.

The areas of instability, that is the areas where
the spiral increases, are very similar for the two cas-
es. Below the critical speed of the vertical mode of
the slipring rotor (mode 15 in fig. 12) no instability
can occur. Above this critical speed also at the nomi-
nal speed of 50 l/s instabilities are possible. Other

E
..
'"
M-

(29)
Fig. 8 Thermal deformation of thö rotor for hot spots

at the sliprings ~~ = 1 C

Fig 9 Thermal deformations of the rotor bor a hot
spot in the bearing no. 8, AJ. = 1 C
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Fig. 10 Stability chart for the hot spots at the
sliprings

[sec]
10,4

estimated ratio P/q_
r!J4,0

instable

2,0

1,0

30 40 50 60 --n- ~/secl

Fig. 11 Stability chart for the hot spot in bearing
no. 8

critical speeds present in this area do not interfere,
in spite of considerable deflections of the mode shapes
in the slipring rotor.

To judge, whether the demonstrated instability
areas may be responsible for the trouble with spiral
vibrations, values of p, p* and q are estimated accord-
ing to the method described in paragraph 6.

The thus determined values however are just a very
rough estimation, since the method is just an approxi-
mation and some parameters like the distribution factor
and the friction factor (see equation (27) and (29))
are very uncertain. Regarding these uncertainties the
calculation of the time his tory of the thermal deflec-
ti on for constant heating was made quite rough, that is
the heat conduction in the shaft in axial direction was
neglected. Fig. 13 shows the time history of the maxi-
mumdeflection calculated in this way for a distribu-
tion of the added and eliminated heat in the journal of
bearing 8 according to fig. 6. The dashed line shows
the adapted curve. It is obvious that one time constant
is not enough for an exact adaption. It is however good
enough for a rough estimation.

The ratios p*/q and p/q for the estimated values
are shown in fig. 10 and 11. It can be seen that p*/q
is not in the instability area, although the maximum
value of ~= 1 has been chosen for the distribution
factor. The ratio p/q however is in the instability
area if the value ~ = 1.0 is chosen for the
distribution factor. It seems that a hot spot in
bearing 8 is the major reason for the trouble with
spiral vibrations in this machine. A hot spot at the
sliprings however may intensify the effect of the hot
spot in bearing number 8.

A hint that the trouble is mainly caused in the
bearing number 8 is also the fact that in practice the
behavior of the spiral vibration was very sensitive to
changes of the oil temperature and oil flow.

The machine was readjusted by taking measures to
reduce the eigenfrequency of the vertical mode of the
slipring rotor. This had the effect of shifting the
instability areas to the left (see fig. 10 and 11). The
machine ran well after this.

[,um]
0,6

~T f 0,4

0,2

lJ.o./L=2000 W/m t=-
L

calculated
adapted p=2.46.W6

q=6.19'10'3 1/sec

o 0,5 1,0 . 1000 sec

Fig. 13 Time history of the thermal deflection of the
shaft at bearing no. 8
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[sec 31 No. f zJ D dominating modeshape
10-8 direction

4,01
12 35.676 0.052 h

I instable.
13 35.918 O.Oll v

o/qf
3,01 I / 14 37.671 0.030 h

I I / 15 41.036 0.020 v I I I I 1 II

2,0
I I I

estimated ratio pJq_ Fi g. 12 Natural modesof the rotor between 30 Hz and
1,0-1 v / 50 Hz



8. CONCLUSIONS

A method to calculate spiral vibrations of a multi
bearing generator rotor with the Finite Element Program
MADYNwas described. In order to check the method, some
results of a simple flexible rotor with two masses were
calculated. The results were compared with those of
W. Kellenberger, who has investigated this model
before. The coincidence was very good.

The method was also applied to areal machine - a
multi bearing turbine generator. Its behavior with
regard to hot spots at the journal of a bearing and at
the sliprings was studied. Astability chart was deter-
mined for both cases, showing the areas with an
increasing and decreasing spiral. The critical speed of
the vertical mode of the slipring rotor, where the
thermal deflections due to the hot spots are large,
proved to be essential for the location of the insta-
bility areas. By estimating roughly the thermal parame-
ters, it was concluded that those instability areas
could be responsible for the sensitivity of this
machine concerning spiral vibrations. The measures to
readjust the machine deduced from the results were suc-
cessful.
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