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ABSTRACT

A method to calculate spiral vibrations of a multi
bearing rotor on the basis of the Finite Element method
is described. In order to verify the method it is
applied to a simple flexible rotor with two concentrat-
ed masses. In addition, a practical example of a multi
bearing turbine generator is investigated, considering
two effects that might cause spiral vibrations: fric-
tion in journal bearings and at sliprings.

NOMENCLATURE
¢ constant added heating efficiency
d diameter

damping coefficient
modal damping factor
matrix containing damping and gyroscopic co-
efficients
frequency
vector of the exciting forces
unit matrix
stiffness matrix
stiffness matrix of the rotor alone
length
mass
mass of a brush
mass matrix
rotational speed
number of brushes per circuit
1 number of brushes per Tength
number of degrees of freedom of the system
p proportionality factor for the added heating
efficiency, if it is proportional to the deflec-
tion of the shaft
proportionality factor for the added heating
efficiency, if it is is proportional to the
radial acceleration of the shaft
matrix containing the parameter for the added heat
proportionality factor for the eliminated heating
efficiency
heating efficiency
matrix containing the parameter for the eliminated
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heat

0il film thickness

time 5

period of the spiral to complete 360

matrix describing the linear relation between the
thermal deflections of all coordinates and the
translatory coordinates at the hot spot
coordinate for translatory deflections

vector of all coordinates

vector for the thermal deflections

real part of the "thermal" eigenvalue
distribution factor for the added heat
coordinate for rotational deflections
circumferential angle

"thermal" eigenvalues

imaginary part of the "thermal" eigenvalue
friction coefficient

temperature

radius of a circular orbit

thermal deflection of a node in direction of its
maximum

shear stress

angular velocity of the shaft
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subscripts

h  horizontal direction

v vertical direction

hs location of the hot spot
T thermal deformation

1. INTRODUCTION

Spiral vibrations are often observed in rotors with
seal rings, sliprings or journal bearings as well as in
connection with shaft rubbing.

In all cases the rotor vibration may induce a hot
spot on the surface of the rotor due to friction and
cause a thermal bow. Thus the vibration changes and the
hot spot and the thermal bow move gradually around the
shaft, decreasing or increasing in magnitude. Fig. 1
shows the polar plot of a vibration observed on the
bearing of a 600 MVA turbine generator resulting from
the described effect.
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Fig. 1 Polar plot of a measured vibration signal for

the case of a spiral vibration.

An increasing spiral must be prevented, either by
avoiding components, where hot spots may arise or by
making sure that hot spots lead to a decreasing spiral
vibration. The latter measure is in many cases the only
solution since journal bearings, sliprings and seal
rings can not be replaced easily. It requires however
the knowledge of the conditions when a spiral increases
or decreases.

Spiral vibrations, also called Newkirk effect, have
been investigated in the past by A.D. Dimarogonas
(1973), W. Kellenberger (1977, 1978, 1979), and other
investigators, which are mentioned in the latest paper
of W. Kellenberger, where a brief review about earlier
investigations is given. W. Kellenberger describes the
effect by linear equations whereas A.D. Dimarogonas
obtains nonlinear equations. Both authors investigate
simple models of rotors.

This paper for the first time deals analytically
with a multi bearing turbine generator. The procedure
how to consider the thermal effects is based on Kellen-
berger (1978, 1979). The mechanical equations of motion
are extended by a linear thermal equation, which is
coupled to the mechanical equations. The necessary
extensions in the global matrices of the original
Finite Element model of the rotor can be made by usin
the Finite Element program MADYN (H.D. Klement (1982)?,
where the user can define values to be added in an
arbitrary place in the global matrices of the struc-
ture.

The method is verified by applying it to a simple
flexible rotor with two masses, which has been investi-
gated earlier by W. Kellenberger (1978).

The following two paragraphs describe how sliprings
and journal bearings can cause hot spots.

The effect of these hot spots on a real machine - a
multi bearing turbine generator - is studied at the end
of this paper by applying the new method.
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Fig. 2 Orbit of the shaftcenter at the sliprings

2. HOT SPOTS DUE TO SLIPRINGS

Fig. 2 shows the orbit of the center of shaft W at
the slipring of a rotor. The brushes are pressed
against the surface of the ring by springs, which have
the property of causing a pressure not depending on the
deflection r of the shaft.

The pressure however may change due to the inertia
of the brushes. Brushes in direction of the radjal
acceleration ¥ of the shaft are pressed by /m, r/
stronger, those on the opposite side by the sdme amount
weaker against the shaft. Since the orbit and the revo-
lution of the shaft have the same period, the pressure
at the point H of the surface is always higher than at
the point H'. Thus the friction at H is larger than at
H' and a temperature gradient arises from H to H'.

The pressure of the brushes on the shaft may also
change due to the friction of the brushes in their
holder. This effect however is not considered here.

3. HOT SPOTS DUE TO JOURNAL BEARINGS

Fig. 3 shows very simplified the distribution of
the 0ilfilm velocity at the two points 1 and 2 of the
journal for two positions of the center of the journal.
The dashed lines show the situation if the center of
the journal has its static position W_for a certain
rotational speed whereas the solid 1ifes show the situ-
ation if the center of the journal is in the point W of
its orbit.

Compared to the situation in W_ the gradient of the
velocity of the oil film on the sufface of the journal
increases in point 1 and decreases in point 2. This
causes a higher friction in point 1 and a lower fric-
tion in point 2 compared to the static position,
because the shear stress is proportional to the gradi-
ent of the velocity. Since the orbit of the center of
the journal and the revolution of the shaft have the
same period, the friction in point 1 is always higher
and the friction in point 2 always lower compared to
the frictions in the static position. Thus a tempera-
ture gradient arises from point 1 to 2.




Fig. 3 Profiles of the 0ilfilm velocities at two

points of the journal.

4. COMPUTATIONAL APPROACH

The equation of motion of the Finite Element model
of a multi bearing turbine generator has the form

MX+Dx+Kx=1(0 , (1)

where M is the mass matrix
E is the matrix containing damping and gyroscopic
coefficients and
K is the stiffness matrix.

K and D are non symmetric, since they contain the damp-
ing and stiffness coefficients of the journal bearings.

If the rotor is thermally deformed the equation of
motion for coordinates x relative to the static posi-
tion of the undeformed rotor is

M§+QL+KKﬁBhﬁﬂ0, ()

is the stiffness matrix of the rotor alone
(without pedestals and journal bearings) and
X; is the vector describing the thermal
deformation.

We assume that the coordinates of the thermal
deformation x, linearly depend on the thermal deflec-
tions x. of the shaft at the location of the hot
spot, t;QE is

xr=IXThs

where KR

‘ (©]

XThs = (¥Th. x7y)T (4)

where x h and x-  are the thermal translatory deflec-
tions iE hnrizoﬁ¥a1 and vertical direction at the loca-
tion of the hot spot. The matrix T is derived from the
thermal deformation of the rotor, which is determined
by a static calculation with thermal loads, that is a
temperature gradient in horizontal direction for the
first column of T and a temperature gradient in verti-
cal direction for the second column.

The change of the thermal deflection is described
by the following equation

XThs=P @ Xns-9q XThs , ®)
& &

where x, = (X, ,;;)T is the vector of the translatory
shgft deflections at the location of the
sy hot spot,
Q  is the added heating efficiency and

Q 1is the eliminated heating efficiency.

Equation (5) has been deduced in detail by Kellen-
berger (1978 and 1979). The coordinates in (5) are
rotating in contrast to the coordinates in (1), (2) and
(3), which are stationary.

In (5) the added heat is proportional to the
deflection of the shaft at the location of the hot
spot. This is a good approximation for the effect in
the journal bearing. In case of the effect at the
sliprings however, the added heat is proportional to
the radial acceleration of the shaft at the location of
the hot spot. For a stationary vibration we may write
for the radial acceleration

¥ns=- 02 ¥pg . (6)

For a spiral vibration, which is not stationary, we
also assume (6), since the changes are very slow.

Introducing a new proportionality factor p* for
this case

=-p @2 7
equation (5) may be written as follows:
XThs=P BXpg-qxrns | (8)

Transforming equation (5) into stationary coordinates
xTh X1y Xps Xy yields

10 XTh -pQ 0 Xh q Q XTh 0
; - + = : (9)
0 1 [|xTy 0 -p@| [x,| [ affr] [0
or by using matrices and vectors

IXThs +B Xng +Q XThg=0 . (10)

Substituing (3) into (2) and extending (2) by (10)
yields

M o|| X
Qﬂi‘rh

D ol x K -KRT|f x (v

+ + =

: = , (11)
0 Lilxths| |B2 Qlfxthg |

where P is a 2 x N matrix (with N as the dimension of
(2)), which has the coefficients of P at the columns of
the translatory coordinates x, of the hot spot.

In case we use equagion Tﬁi instead of (5) p must
be substituted by -p*Q".

To calculate spiral vibrations the original Finite
Element model of the rotor represented by equation (1)




must be extended by introducing the two extra degrees
of freedom x h and X1y The additional coefficients
must be addea to the §1cbal matrices. This possibility
is provided for the input of the program MADYN (H.D.
Klement (1982)).

From equation (11) one could calculate the time
history of x by a time step method. The polar plot of
the time history of each coordinate would be a spiral
either increasing or decreasing in magnitude. This cal-
culation however would require a great computational
effort, since the period of a spiral to complete 360
is very long for realistic examples. That is why the
computation would have to be done for quite a long
period of time until one could tell whether a spiral
increases or decreases in magnitude.

This information however can also be extracted from
the eigenvalues of equation (11). Their calculation
requires much less computational effort. The program
MADYN provides two methods to determine complex eigen-
values: The Hessenberg method and an inverse vector
iteration.

Equation (11) has 2 (N+1) eigenvalues. Since real-
istic values for p and q_gre very small - p is in the
orggr of magnitude of 10 ° and q is in the range of
10 "W _where w_is a representative natural
frequeney of the 2tructure (see Kellenberger (1978)) -
a set of 2N eigenvalues are practically the same as
those of equation (1) representing the structure. The
additional two eigenvalues are a conjugate complex pair

A=ativ (12]

which is called thermal eigenvalue in the following.

The imaginary part v of this eigenvalue is almost
equal to 2 . This can be explained mathematically by
the thermal equation (9). For p = 0 this equation is
decoupled from the structural equation and has the
eigenvalues A=-g*iQ ., For p # 0 the eigenvalue
changes due to the coupling to the structure. The
change of the imaginary part is only small, since p is
very small, hence the coupling is weak.

The change of the real part however is substantial,
because q is also very small.

It is obvious that the thermal eigenvalue must have
an imaginary part almost equal tofl , since a constant
thermal bow of the shaft rotates with 2 in a station-
ary coordinate system. The bow however moves gradually
around the shaft. That is why ¥ 1is slightly different
from L1 .

The difference between ¥ and £2 tells us how fast
the bow moves around the shaft respectively at which
speed the spiral is traced. The period to complete 360
is

T=2r/lv-Ql . (13)
The direction of the revolution is as follows:
v > (1 same direction
¥ <1 opposite direction of the rotor's revolu-
tion.

The real part & of the thermal eigenvalue A tells us
whether the spiral increases or decreases in magnitude:

o> (0, increasing magnitude
x < 0, decreasing magnitude . (14)
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Fig. 4 Model of a simple rotor

5. A SIMPLE EXAMPLE

In order to verify the method described in the pre-
vious paragraph, it is applied to the rotor in fig. 4.
The rotor has a flexible, massless shaft and two disks
of the mass m. It is assumed that the disks do not have
any moments of inertia. The translatory movements of
the disks are damped by two dampers in horizontal and
vertical direction at each disc. The heat is added at
the left mass. The added heat is proportional to the
deflection of this mass as indicated by the spring. W.
Kellenberger (1978) has derived an approximate, analyt-
ical solution of the spiral vibration of the translato-
ry coordinates of node 2 of this model. This solution
can serve as comparison with the solution according to
our method.

We model the stiffness property of the rotor by
massless beam elements. The coordinates of the model
for the vertical bending direction are shown in fig. 4.

The assumed shape for the thermal deformation due
to a hot spot at node 2 is shown in fig. 5. This shape
corresponds to Kellenberger's assumption, that the
thermal deflection of the right mass is one third of
the thermal deflection of the left mass.

If the thermal deformation in fig. 5 is in vertical
direction, it can be described by the following vector:

( Yiv X2h Pov X3h Y3v P4y )=

(-41 1 -4/(31) 1/3 4/3) 4/@))T | (15)

The same shape in horizontal direction can be
described in the same way with the corresponding
coordinates. The elements of the vector in (15) are
used in the matrix T (see equation (3)).

In the following, the frequency

wp= V216 El/ (B m) (16)

is used as a reference frequency as by Kellenberger,

Fig. 5

Assumed thermal deformation
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The first two eigenfrequencies of the undamped
system without hot spot are

oy= 047105 , 0o =1.333 oy (17)

For the damping coefficient d and the
proportionality factor g, the following fixed values
are chosen as by Kellenberger:

d=0.1mag (18)
q=103 a, (19)

The proportionality factor p and the angular
velocity Q are varied. The following examples are
calculated:

1) Q=04 0y , p=1.15 103

2 =040y , p=1.235103
3) @=12w; , p=057 103

4 Q=1205 , p=059 103

Table 1 shows the calculated thermal eigenvalues and
the period T acsording to equation (13) for the spiral
to complete 360°. The period T in hours is calculated
by means of n,= wW./2m » where n, has the dimen-
sion 1/min., as follows:

1
T

= (20)
|vo, -viog| nge0 .

Table 1: Thermal eigenvalues of the calculated examples
and period T, n, = 1000 1/min

Example o/wg10°  viwg T[h]
1 -5.7339 0.39850 0.033
2 1.1499 0.39947 0.031
3 -1.6850 1.19961 0.043
4 1.7338 1.19960 0.042

The values for T, the direction of the spiral's revolu-
tion and the stability coincide with Kellenberger's
results. The direction of the spirals' revolution is
always against the rotor's revolution, since the values
for v/ws are smaller than the rotational speed N/e,.The
stability is assessed by the sign of a/w, -

6. ESTIMATING THE PROPORTIONALITY FACTORS p, p* AND q

In the previous paragraph, the same values as by
Kellenberger were chosen for the proportionality fac-
tors p and q. He estimated the values by comparing the
calculated results with observations in real machines.

In the following we try to derive approximate for-
mulas to calculate p, p* and q from the physical
effects described in paragraph 2 and 3, in order to
find out later (see paragraph 7), if these effects can
be responsible for the observed spiral vibrations in
the investigated real machine.
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Circumferential distribution of the added and
eliminated heating efficiency

Fig. 6

For this purpose the term representing the added
heat in equation (5) respectively (8) is assumed to be
constant. This assumption can be made, because the
change of the vibration of the rotor is very slow and
because the change of the added heat during one revolu-
tion of the rotor can be neglected, since the thermal
time constants are much larger than the period of the
rotor's revolution.

With this simplification equation (5) respectively
(8) may be written as follows

pr=c-apr , (21)

with Pr as the thermal deflectior at the location of
the hot spot in direction of its maximum.

With the initial condition pPT(0) =0
solution

(21) has the
pr=c/q(1-ed) (22)

This function may be adapted to the time history of
the thermal deflection resulting from a calculation or
measurement, when the shaft is heated constantly at the
lTocation of the hot spot with a circumferential distri-
bution of the added and eliminated heat efficiency
according to fig. 6, which shows the difference to the
mean added heating efficiency.

The adaption can be done at two instants. From the
?ta§1onary thermal deflection pr (t=es) follows from

22

C=qpr (t=o0) . (23)

_ From an arbitrary instant t follows from (22) by
using c according to (23)

Q=-14 In (1-pyy/prea) (24)

Equation (24) directly yields the parameter q, whereas
the parameter p, respectively p* must be extracted from
c. For this purpose we assume that the orbit of the




center of the shaft is a circle with the radius p. In
this case we may write for c

c=pQp ' (25)
respectiviey
c=palp . (26)

From these two equations the proportionality
factors may be determined, if the value of the radius
is known. It_has the value necessary to produce the
difference AQ of the added and eliminated heating effi-
ciency assumed in the calculation of the time history
of the thermal deflection .

In case of a hot spot at the sliprings, the
relation between AQ and p is found by calculating the
pressure forces of the brushes on the surface of the
ring due to the shaft acceleration as a function of fit,
summing up the difference between positive and negative
forces, averaging it for one revolution of the shaft
and calculating the power of the friction due to the
averaged force difference. Since not all the friction
power necessarily enters the shaft as heating
efficiency, a distribution factor P is introduced. The
thus calculated AQ-p  relation is

. AQ/

p=

= 27
BnanBQ3ud £

where AQ/lis the difference AQ per length,
n the number of brushes per circuit,
n, the number of brushes per length,
mg the mass of one brush,
p the friction coefficient,
d the diameter of the ring and
B the distribution factor.

In case of a hot spot in the bearing, the change of
the shear stress At in direction of the deflection ¢,
which is equal to the change #s of the oilfilm thick-
ness s, is approximated by the linear terms of a
Taylor extension of the function

t=0C/s (28)

where ¢ is a constant. The mean o0ilfilm thickness for
the static position of the journal s_ is chosen as the
reference 0ilfilm thickness for the 8xtension. The con-
stant ¢ can be determined from the known power loss P
in the bearing. Assuming a circumferential distributihn
of ar according to Q in fig. 6, calculating the dif-
ference between the positive and negative power due to
AT by integration and again introducing a distribution
factor p yields the following relation

xaQ
p=—s
T (29)

7. A PRACTICAL EXAMPLE

Fig. 7 shows the rotor investigated in the
following consisting of a high pressure, an
intermediate pressure, two low pressures, a generator
and a rotor for the sliprings. The whole rotor has nine
bearings and a total length of 41.8 m. The external
support consisting of pedestals and foundation is
modelled by a mass and two springs in horizontal and
vertical direction.

bearing no, sliprings

e e
18m

Fig. 7 Model of the real machine

The rotor was very critical to problems with spiral
vibrations in the area of the slipring rotor. The
machine was very carefully checked with regard to any
rubbing of the rotor at the housing, so that this can
be ruled out as the reason for the trouble. The seal
rings also did not clamp. Remaining causes for the
problem could be hot spots in the bearing number 8 and
at the sliprings.

Fig. 8 and fig. 9 show the thermal deformation Ef
tge rotor for a constant temperature gradient of A=
1°C over the rotor diameter at the sliprings and in the
journal of bearing number 8. In both cases we have
large thermal deformations in the slipring rotor, which
is a certain explanation for the trouble in this part
of the rotor.

In case of the hot spots at the sliprings, we have
two points where heat is added to the shaft. The method
of calculation in paragraph 4 is described for just one
hot spot. Although the method could easily be extended
to more hot spots, we assume that the heat is added at
just one point (between the sliprings). This is just a
minor simplification, since the two sliprings are quite
close,

Fig. 10 and 11 show the stability chart for the two
cases. The threshold was determined by searching the
required p respectively p* for a certain q to fulfil
the condition «x=0, withxas the real part of the ther-
mal eigenvalues (see equation (12)). This was done by
linear interpolation from two real parts « for two dif-
ferent pairs of values of p respectively p* and q. The
stability threshold determined in this way is exact
within the limits of the theory, since & linearly
depends on p and g as was found out by a number of
calculations.

The areas of instability, that is the areas where
the spiral increases, are very similar for the two cas-
es. Below the critical speed of the vertical mode of
the slipring rotor (mode 15 in fig. 12) no instability
can occur. Above this critical speed also at the nomi-
nal speed of 50 1/s instabilities are possible. Other

[ | i [ [
Fig. 8 Thermal deformation of thg rotor for hot spots
at the sliprings A+ =17C
| | | I I~ |
Fig 9 Thermal deformations of the rotor gor a hot
spot in the bearing no. 8, ar=1%
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Fig. 10 Stability chart for the hot spots at the

sliprings
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Fig. 11 Stability chart for the hot spot in bearing
no. 8

critical speeds present in this area do not interfere,
in spite of considerable deflections of the mode shapes
in the slipring rotor.

To judge, whether the demonstrated instability
areas may be responsible for the trouble with spiral
vibrations, values of p, p* and q are estimated accord-
ing to the method described in paragraph 6.

The thus determined values however are just a very
rough estimation, since the method is just an approxi-
mation and some parameters like the distribution factor
and the friction factor (see equation (27) and (29))
are very uncertain. Regarding these uncertainties the
calculation of the time history of the thermal deflec-
tion for constant heating was made quite rough, that is
the heat conduction in the shaft in axjal direction was
neglected. Fig. 13 shows the time history of the maxi-
mum deflection calculated in this way for a distribu-
tion of the added and eliminated heat in the journal of
bearing 8 according to fig. 6. The dashed line shows
the adapted curve. It is obvious that one time constant
is not enough for an exact adaption. It is however good
enough for a rough estimation.
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No.  f[HZ] D dominating mode shape
direction

12 35.676 0.052 h +——ao—+ s s A Y

13 35.918 0.011 V a—i T O —

14 37.671 0.030 h = =T

15 41.036 0.020 V =s—i B —F

Fig. 12 Natural modes of the rotor between 30 Hz and
50 Hz

The ratios p*/q and p/q for the estimated values
are shown in fig. 10 and 11. It can be seen that p*/q
is not in the instability area, although the maximum
value of P= 1 has been chosen for the distribution
factor. The ratio p/q however is in the instability
area if the value B = 1.0 is chosen for the
distribution factor. It seems that a hot spot in
bearing 8 is the major reason for the trouble with
spiral vibrations in this machine. A hot spot at the
sliprings however may intensify the effect of the hot
spot in bearing number 8.

A hint that the trouble is mainly caused in the
bearing number 8 is also the fact that in practice the
behavior of the spiral vibration was very sensitive to
changes of the oil temperature and oil flow.

The machine was readjusted by taking measures to
reduce the eigenfrequency of the vertical mode of the
slipring rotor. This had the effect of shifting the
instability areas to the left (see fig. 10 and 11). The
machine ran well after this.

[mm]

0,6-

AQ/L=2000 W/m
t=oco
B OB T e s S N
,/’/ calculated
02- z adapted p=2.461076
q=6.19-1073 1/sec
T T
0 0,5 T 1,0 - 1000 sec

Fig. 13 Time history of the thermal deflection of the
shaft at bearing no. 8




8. CONCLUSIONS

A method to calculate spiral vibrations of a multi
bearing generator rotor with the Finite Element Program
MADYN was described. In order to check the method, some
results of a simple flexible rotor with two masses were
calculated. The results were compared with those of
W. Kellenberger, who has investigated this model
before. The coincidence was very good.

The method was also applied to a real machine - a
multi bearing turbine generator. Its behavior with
regard to hot spots at the journal of a bearing and at
the sliprings was studied. A stability chart was deter-
mined for both cases, showing the areas with an
increasing and decreasing spiral. The critical speed of
the vertical mode of the slipring rotor, where the
thermal deflections due to the hot spots are large,
proved to be essential for the location of the insta-
bility areas. By estimating roughly the thermal parame-
ters, it was concluded that those instability areas
could be responsible for the sensitivity of this
machine concerning spiral vibrations. The measures to
readjust the machine deduced from the results were suc-
cessful.
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