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Abstract. A new model for analyzing the Morton effect is presented. Previous 
studies of the Morton effect were either simplified or rigorously detailed requir-
ing huge computational effort. The present work describes the new model 
which tries to combine accuracy of the model and computational efficiency. 
Perturbation method was used for the governing equations of the lubrication 
theory. The averaging method was applied to the equations of motion, facilitat-
ing large time steps for the numerical integration process, thus, greatly reducing 
the computational effort. The estimation of the spectral radius of transition op-
erator was proposed as a convenient indicator for the rotordynamic system’s 
stability threshold. As a concrete example a double overhung turboexpander 
supported on 5-pad tilting-pad bearings was considered, which has been previ-
ously studied experimentally and analytically by Schmied and others in 2008.  

Keywords: Morton effect, synchronous thermal instability, spiral vibrations, 
differential heating, shaft’s thermal bend. 

1 Introduction 

In the case of a residual unbalance in the rotor the journal will execute a small syn-
chronous orbit. Then one part of the shaft surface will always be closer to the bearing 
wall than other parts. This causes a higher friction in this domain, because the shear 
stress is proportional to the velocity gradient, and leads to a non-uniform temperature 
distribution of the shaft in circumferential direction inside the bearing and ultimately 
to a thermal bend. This thermal bend can in combination with an overhung mass sig-
nificantly increase the rotor unbalance and thus the synchronous rotor vibration. Un-
der certain conditions this effect can lead to synchronous rotor instability. Such insta-
bility caused by asymmetrical bearing journal heating is known as the Morton effect 
and sometimes also referred to as the hot spot phenomenon. 

In the meantime a significant number of papers devoted to the theoretical investi-
gation of the Morton effect are published. A detailed overview of publications is pre-
sented in [1]. The publications can be divided into three groups. First are the analyti-
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cal investigations (for ex. [2]). They are important, because they revealed the exist-
ence and some properties of the effect. On the other hand they are applicable to lim-
ited types of bearings. The second group are simplified models (for ex. [3, 4]), which 
are based on the estimations of some coefficients or on the solution of very simplified 
governing equations of the lubrication theory. Such models are easy to implement, but 
it is difficult to fully trust in their results due to the simplifying assumptions. Finally, 
the third group are models, which use a rigorous approach such as a CFD technique or 
a method described in [5]. The main problem of such approaches is a huge computa-
tional cost. 

The present paper describes a new model for analyzing the Morton effect, which is 
quite rigorous and at the same time is computationally efficient. In the first stage of 
the modeling the static equilibrium position in the bearing is determined taking into 
account variable viscosity and cavitation. Based on solving a perturbed Reynolds 
equation the bearing dynamic coefficients are determined. In the second stage of the 
modeling the shaft’s and pad’s equations of motion considering the shaft’s asymmet-
rical heating and thermal bending inside the bearing are solved. For the determination 
of the shaft's thermal bend the oil temperature is determined by solving the energy 
equation. The temperature distribution allows calculating the heat flow from oil to the 
shaft for one revolution of the rotor’s synchronous response. This heat flow allows 
calculating the shaft asymmetrical heating and the subsequent shaft thermal bending. 
Using the averaging method for the equation of motion allows large time steps in the 
numerical integration process and, thus greatly reduces the computational effort. Nu-
merical results for simulating the Morton effect are provided and compared with test 
data [6].  

2 Theory 

2.1 Governing Equations 

The proposed model can be applied to bearings with different design. The focus of 
the current research is tilting pad bearings, since they are widely used for high speed 
applications, because they are generally more stable.  

For the definition of the fluid film pressure distribution in each pad of the bearing 
the variable viscosity form of the Reynolds equation is used: 
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with h – film thickness, p – oil pressure, t – time, μ – oil viscosity, x, y, z – axes of the 
coordinate system. 



The pressure at the leading edge of the each pad is the supply pressure. At the re-
maining boundaries of the film the pressure is atmospheric. In the case of cavitation 
the Swift-Stieber conditions are used. 

For the determination of the oil temperature distribution for each pad the energy 
equation is solved. In the current research the energy equation is considered at the 
midplane of the bearing, assuming that the axial variation of the oil film temperature 
is negligible. Thus the following form of the energy equation is used 
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with ρ – oil density, cp – heat capacity of oil, λ – heat conductivity of oil, u, v – cir-
cumferential and radial components of the oil velocity. 

The energy equation is solved around the whole circumference of the bearing using 
the boundary layer theory to estimate the dissipation term between pads. For the heat 
exchange condition at the oil-pad interface the approach proposed in [7] is used. For 
the viscosity-temperature relationship the equation of Falz is used 

 ( ) kTT −= 00 /µµ   (4) 

with T0 – reference temperature (usually it is an oil supply temperature), μ0 – oil vis-
cosity at temperature T0, k – coefficient, which depends from the oil. 

The Reynolds equation and the energy equation are coupled via the viscosity dis-
tribution. For the joint solution of these equations an iteration process is implemented, 
where the updated viscosity distribution, obtained from the solution of the energy 
equation (3) and viscosity-temperature relationship (4), is used for solving the Reyn-
olds equation (1) at the next iteration step. The Reynolds and energy equations are 
solved by using the finite volume method.  

The shaft temperature distribution is calculated by solving the 3D heat conduction 
equation in cylindrical rotating coordinate system (r, φ, z) 
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with Ts – shaft temperature, ρs, cs and λs – density, heat capacity and heat conductivity 
of the shaft’s material. 

For the numerical solution of equation (5) the splitting method is used. Here it is 
important to note, that equation (5) is solved not only within the limits of the bearing 
but also at some external domain of the bearing. The size of this domain is determined 
in the calculation process. 

Any bend angle of the shaft at the bearing may be defined by βx(t,z) and βy(t,z) 
which are fixed to the shaft. For the definition of the bend angle purely caused by 
thermal influences the analysis developed by Dimarogonas [8] is adopted. This yields 
the following formula 



 yx

R
i

s idrderzrtT
Idz

d βββϕϕαβ π
ϕ +=−= ∫ ∫ ,),,,(

2

0 0

2   (6) 

with I – shaft’s cross section second moment of area, R – shaft’s radius and α – ther-
mal expansion coefficient. 

The flexible rotor is modeled with Timoshenko beam elements. The equation of 
motion for the rotor bearing system has the form 

 )(tfKXXG)(DXM =+++    (7) 

with X – system degree of freedom vector consisting of generalized deflections of the 
center of rotation at element nodes in a globally fixed coordinate system, M – mass 
matrix, D – damping matrix, G – gyroscopic matrix, K – stiffness matrix and f – ex-
ternal force. 

If the rotor is thermally deformed the equation of motion for coordinates X relative 
to the static position of the undeformed rotor is ([2, 3, 5]) 

 TR XKfKXXG)(DXM +=+++ )(t , (8) 

where KR is the stiffness matrix of the rotor alone (without bearings) and XT is the 
vector describing the thermal deformation. Elements of the vector XT are calculated 
using (6). 

Equation (8) is complemented by the pad’s equations of motions  

 0=++++ ψHψEXDXCψI ψψbψbψpad    (9) 

with Xb – shaft’s deflection at the bearing’s nodes; ψ – vector of the pad’s tilt angles; 
Ipad, Cψ, Dψ, Eψ, Hψ – matrices of the inertia moments and dynamic coefficients of 
the pads.  

2.2 Perturbation method  

As it is known [1], the maximum temperature difference due to asymmetrical heat-
ing of synchronously precessing shaft is small compared to the temperature level in 
the lubricant film. At the same time errors arise, due to the approximate description of 
the physical process in the system and the used computational methods. As a result, 
the total error can have the same order of magnitude as the studied effect. In order not 
to “lose” the effect, the perturbation method is used.  

The film thickness for an arbitrary position of the shaft can be presented as sum of 
the thickness in equilibrium position and an additional term 

 hhh δ+= 0 . (10) 

Due to smallness of the initial unbalance and, accordingly, smallness of the resulting 
vibration, δh is a small value compared with h0. In accordance with the perturbation 



method the oil pressure can be found as sum of the pressure in equilibrium position 
and a “perturbed” term 

 ppp δ+= 0 . (11) 

The oil velocity components u and v, the oil temperature T and the shaft temperature 
Ts can be written in a similar way. Neglecting terms of second order and higher, the 
governing equations splits on the equations of zeroth and first order. Zeroth order 
equations for p0, T0 etc. correspond to the static equilibrium position. Perturbed (first 
order) equations for δp, δT etc. correspond to the shaft vibration around the static 
equilibrium position due to initial mechanical unbalance. 

2.3 Averaging method 

Harmonic excitation is considered as an initial unbalance. In this case f(t) and XT 
in (8) can be written in the form 
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with ω - angular shaft’s speed. Due to the gradual heating of the shaft, c
TX  and s

TX  
are time dependent (in contrast with fc and fs, which are constant in time). That’s why 
taking into account (12), the solution of (8) and (9) is searched in the form (synchro-
nous precession) 
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where Xc, Xs, ψc and ψs are not constant but slowly varying in time due to the shaft 
heating. Physically it is clear, that this variation is much slower than one period of the 
shaft revolution.  

Applying the idea of the method of variation of parameters (variation of constants) 
it is possible to receive the first order equations for Xc, Xs, ψc and ψs. As written 
above Xc, Xs, ψc and ψs change in time much slower than cos(ωt) and sin(ωt) and can 
be considered as constants over one period of revolution. Proceeding from this and 
averaging the right hand sides of the first order exact equations for Xc, Xs, ψc and ψs 
over one period, the following system of the averaging equations is received  
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The equations for ψc and ψs are derived similarly.  
The resulting equations (14) are solved by the trapezoidal method and the integra-

tion step corresponds to a step used for the determination of shaft’s thermal bend. 
This step is equal to the time of a few shaft’s revolutions. Thus using the averaging 



method allows using a much bigger time step and to implement a much less time con-
suming scheme in comparison to a direct integration of (8) and (9). 

Similar to (13) the perturbed oil temperature can be writing in the form 

 ( ) ( ) ( ) ( )ttTttTT sc ωωδ sincos +=  . (15) 

Here Tc, Ts changes in time much slower than cos(ωt) and sin(ωt) as in the case of the 
vibration parameters. Continuing the idea of the averaging method, Tc, Ts are consid-
ered as constants in time during the time step (few shaft’s revolutions), which is used 
for solving (14). Finally, representation (15) allows simplifying the numerical proce-
dure for the perturbed energy equation, because instead of one transient equation it is 
possible to solve two coupled stationary equations for Tc and Ts. This system of dif-
ferential equations is solved by using the finite volume method. 

2.4 General Scheme of calculations. Spectral radius of transition operator 

Figure 1 provides the general flow chart for the calculating process according to 
the described scheme for the Morton effect analysis.  

 

 
Fig. 1. Flow chart: transient analysis of the Morton effect 

Here it is important to note that the transient part of the scheme (marked by dashed 
rectangle at fig. 1) is the solution of the Cauchy problem for the equation (14), where 
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it is necessary for the determination of the right-hand part at each time step to solve 
the perturbed energy equation in the lubricant film, which is coupled through the heat 
flux with the heat conduction equation for the shaft. 

Due to the numerical methods, which were used during the design of the described 
model the resulting discrete problem that approximates the original continuous prob-
lem (marked by dashed rectangle at fig. 1) has the form  

 dRrr n1n +=+  , (16) 

where R is an transition operator which corresponds to the implementation of the one 
time step of the process, r is a vector which contains all unknown shaft’s vibration 
parameters, n is a number of the time step. For the stability of the discrete problem it 
is necessary and sufficient that ρ(R) < 1, where ρ(R) is a spectral radius of operator R. 
For the approximation of the original continuous problem unconditionally stable 
methods were used. Therefore the only source for instability in the computational 
process (16) is the instability of original problem. Since for sufficiently small parame-
ters of discretization (sizes of grid cells) solutions of discrete and continuous prob-
lems are close it is possible to suppose that condition ρ(R) < 1 will approximately 
define the stable region as discrete and continuous problems. Condition ρ(R) =1 will 
give the stability threshold. Thus the estimation of the spectral radius can be a con-
venient indicator for the stability in the analysis of the Morton effect. 

Since R is a finite dimensional operator, its spectral radius is the maximum modu-
lus of the eigenvalues of the corresponding matrix, which is explicitly unknown. 
However implicitly this matrix is present in the calculation process and its spectral 
radius can be calculated by the power method.  

3 Results 

3.1 A Case Study 

The described mathematical model was applied to the analysis of the Morton effect 
for the rotor with two overhung impellers of the turboexpander TC 400/90 made by 
Cryostar SAS [6]. This is a typical system with high hot spot sensitivity. The de-
scribed machine is supported by two 5-pad tilting pad bearings with load-on-pad. The 
rotor of the turboexpander is shown in fig. 2. The total shaft length is 760 mm, the 
total rotor mass is 120.63 kg. 

 
Fig. 2. Rotor system of the turboexpander TC 400/90 [6]  



During the internal testing of the turboexpanders the measured shaft vibration 
started to rise suddenly just above the nominal speed (~18000 rpm). The vibration had 
a dominant (1×N) component. The vibration polar plot had the spiral vibration ap-
pearance typical for the Morton effect. 

In the process of calculation an initial mechanical unbalance with a magnitude of 4 
times the API residual unbalance (165 gmm) [9] is used. The unbalance magnitude is 
based on the complete rotor weight, not just on the overhung portions. 

3.2 Calculation results 

In fig. 3 the polar plots (amplitude and phase) of the calculated vibration for differ-
ent rotational speeds are presented. The result of the vibration in the compressor bear-
ing is shown.  

 
Fig. 3. Spiral vibration in polar plot, which was calculated according to the described scheme  

As can be seen from the presented figures, the change of amplitude and phase with 
time in the polar plot has the spiral form typical for the Morton effect. In each graph 
the small black circle corresponds to the start of calculation process, i.e. to the vibra-
tion amplitude and phase only due to initial mechanical unbalance. It can be seen, that 
the speed 19000 rpm lays in the stable zone (spiral with decreasing amplitude), 19600 
rpm corresponds practically to stability threshold and 20200 rpm is in unstable zone 
(spiral with increasing amplitude). 

As it is known the cause of the shaft’s thermal bend in the case of the Morton ef-
fect is asymmetrical heating inside the bearings. In fig. 4 the perturbed shaft surface 
temperature distribution in the surroundings of the bearing at the compressor side at 
the instant t = 120 seconds since the beginning of the calculation for the case of 19600 
rpm is presented. The bearing boundaries are marked by solid bold lines. Thin solid 
lines are isotherms with temperature values marked on them. Two spots – cold (dark) 
and hot (bright) are clearly visible on the surface of the shaft. Such spots are typical 
for the Morton effect.  

Above in the paper the spectral radius of transition operator was proposed as an in-
dicator to assess the stability of the rotordynamic system in case of the Morton effect. 
In the left graph of fig. 5 the calculated spectral radius according to the described 
scheme is presented as a function of speed. 



 
Fig. 4. Development of the perturbed shaft’s surface temperature (bearing and its surroundings)  

 
Fig. 5. Spectral radius as function of the rotational speed. Left graph - original model, right 

graph - original model vs. modified model 

It is possible to see from fig. 5 that the stability threshold is at ~19690 rpm. This 
result is consistent with the conclusions based on the analysis of the spiral vibration in 
the polar plots in fig. 3. If we take the rotational speed of 18000 rpm as stability 
threshold of the real machine (starting from this speed there was a strong increase of 
the vibration level in the test), the results received on the base of the developed model 
differ from the test by less than 10%. 

To prevent the Morton effect the manufactures of the turboexpander decided to 
make some modifications. At first they reduced the bearing width. The original tilting 
pad radial bearings had a width of 0.6D. It was decided to narrow the bearing width 
from 55 to 40 mm. In addition to the bearing width the oil viscosity was reduced from 
nominal 46 cSt to 32 cSt.  

With the modified bearings and the oil viscosity reduction the test results did not 
show spiral vibrations anymore. The shaft thermal bow due to the hot spot phenome-
non and spiral vibration were not observed up to speed of 22000 rpm. The results of 
the calculations with the described scheme are presented in the right graph of fig. 5. 
According to them, the calculated stability threshold for the modified system is equal 
to 23000 rpm. This result is fully agrees with the test. 



4 Conclusions 

A new model for analyzing the Morton effect has been presented. The spectral ra-
dius of the transition operator as a convenient indicator for stability in the analysis of 
the Morton effect is proposed. The results are well consist with experimental data. 
Using the averaging method reduced computational cost. With the chosen grid pa-
rameters the calculation of 1 second of the real process requires about 8.5 seconds 
processor time. That’s why for the calculation of ~100 seconds of the real process (as 
at the two side graphics in the fig.3) requires about 14 minutes. At the same time us-
ing the spectral radius for the estimation of the system stability reduces calculation 
time. One point in fig. 5 needs about 4 - 6 minutes. 
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