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Abstract 

The operating behaviour and thereby the unsteady bearing load of high speed hydrodynamic bearings can be 
affected by dynamic effects in the oil supply, the energetic coupling of the oil films and tolerances in the lubricating 
gap. The 2D oil film pressure, the 3D temperature distribution in the oil film, and the bearing shell as well as the 
static and dynamic bearing coefficients can be more precisely calculated with the enhanced program 
ALP3T2Penhanced (considering two phase model and inertia forces in the oil film) compared to classical 
cavitation models such as Gümbel and Reynolds boundary conditions. This applies to complex sliding bearings 
with various geometries, with hydrodynamic pockets and to various bearing types, such as tilting pad bearings, 
floating ring bearings as well as to squeeze film dampers. The modelling of the pad geometry, which is described 
by curvature radii and centres, is supported by user-friendly Graphical User Interface. The calculation is based on 
an iterative solution of the extended Reynolds, energy and deformation equations, including temperature and 
pressure dependent properties of the oil film. 

By integrating the program ALP3T2Penhanced into the program-system MADYN 2000, the vibration 
behaviour of rotor – bearing – basement systems can be accurately calculated. Analysing such systems reveals that 
the damping in the cavitation areas and the local inertia forces in the lubricating oil films can significantly change 
the non-linear vibration behaviour of such complex systems. For static non-centred, non-rotating floating ring 
bearings and squeeze film dampers, the important centring effect due to the dynamic load (actually creating load-
carrying capacity) can be clearly shown by non-linear analyses with the enhanced program system. 

Nomenclature  

B bearing width 
c lubricant specific heat 
cik stiffness coefficient 
dik damping coefficient 
D bearing diameter 2R 
H film thickness h/∆R 
Kx,Kz turbulence factors 
m mass 
p pressure 
r journal radius 
R journal bearing radius (inside) 
RS pad radius 
Re Reynold number Re=ρωr∆R/η 
Re*  modified Reynolds number Reψ 
SoD Sommerfeld number for rotation Fstatψ2/(BDηω) 
SoV Sommerfeld number for squeezing )(/2 ηωψ BDFV  
T temperature 
V volume of phase 

zy,  radial, axial coordinate rzzRyy /,/ == ∆  

u,v,w flow velocities u=U/(ωr),v=V/(ω∆R),w=W/(ωr) 
αD resulting angle of bearing pressure 
∆R radial bearing clearance R-r 
γ attitude angle of journal 
δ tilting angle of pad 
ε relative eccentricity of journal e/ ∆R 
εh,v horizontal, vertical canting of journal 

εi=(x,y)/∆R 
η lubricant dynamic viscosity  
ϕ angular coordinate 
φ time ωt 
Π lubricant pressure pψ2/(ηω) 
ρ density 
ψ relative bearing clearance ∆R/R 
ψd relative pad thickness tP/r 
ψS relative pad clearance (RS-r)/∆R 
τ center angle of pad radius 
ω journal rotational velocity 
ωS journal vibration frequency 
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1   Introduction 

For the calculation of the load capacity of multi-lobe and tilting pad bearings normally only insufficient models 
are used for the energy coupling of the lubricating oil film in circumferential and axial direction [1] – [3]. For 
floating ring bearings and squeeze film dampers, the energetically coupling of the oil films by the radial heat 
conduction and oil flow is in general neglected or only considered by rough approaches [4]. These effects can 
considerably influence the transient bearing capacity and thus the allowable unbalance, the threshold of self-
excited vibrations and the load capacity of squeeze film dampers for high velocities. 

Therefore an efficient method is presented for calculating the stationary and transient load capacity of general 
radial journal bearings, floating ring bearings and squeeze film dampers, which takes into account the important 
“additional effects” for high vibration velocities. By integrating the journal bearing program into a linear and non-
linear rotor-dynamic program [5], complex rotor bearing systems can be also calculated for difficult operating 
conditions. 

2   Theory 

High friction losses occur in the oil film for high sliding velocities. This leads to high temperature gradients in 
the lubricating film because of the low heat conductivity of typically used oil types. Therefore extended formulas 
of the basic equations have to be used for calculating the hydrodynamic pressure in high-speed journal bearings. 
These formulas must consider the change of the strongly temperature-dependent viscosity of the lubricating oil in 
all three coordinate directions [3]. Solving the energy equation and the appropriate heat transfer equations leads to 
three-dimensional temperature distribution of the lubricating film, the bearing bush and the shaft. 

Significant simplifications are used in the calculation procedures in [3] in contrast to ALP3T2Penhanced, such 
as idealized geometry of the bearings, negligence of the thermal and elastic deformations of the bearing bush, 
symmetrical boundary conditions in axial direction for the calculation of the pressure and temperature distribution, 
and negligence of the local inertia forces in the lubricating film. 

The local film thickness of each lobe or pad can be described by equation (1), see [6] 
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2.1 Two Phase Model for Lubricating Film 

It is possible to capture the influence of the air, which is dissolved in the lubricating oil, and the mixture of air 
and oil in the cavitation area (Figure 1) with a quite simple two-phase flow model. As it is shown by several 
studies, the air which is solved in the oil does not change the viscosity and the density of the oil very much [7]. In 
contrast, the viscosity of the oil-air mixture changes noticeably for increasing foaming of the lubricating film. The 
variation of the viscosity due to the air-oil mixture depends on the diameter and surface tension of the air bubbles 
and the shear stress in the lubricating gap [7]. In hydrodynamic bearings and squeeze film dampers the following 
approach can be derived, since the shear stress is usually much bigger than the surface tension of the air bubbles: 
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with C = Vb/Vtotal = Vb/(Vb+Voil) degree of foaming, r = Vb/VOil amount of bubbles. 
The relative local density mixρ depends on the gas diffusing in and out of the oil. It is modelled as a function 

of the film pressure. The undissolved air arises as bubbles in the oil. The ratio r between the undissolved gas and 
the oil can be calculated by use of the Henry-Daltons and Boyle-Mariottes law: 
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with p = absolute pressure, T = absolute temperature in Kelvin and index 0 = ambient conditions. By neglecting 
the mass of the undissolved air the relative local density is 
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The Bunsen-Coefficient is av ≈ 0.08 … 0.09 for relevant mineral oils (ISO-VG 32 to ISO-VG 220) and is nearly 
independent of the temperature (T = 20 °C to 100 °C). 

 

 
Figure 1: Cavitation areas in a lemon type bearing 

2.2 Pressure Distribution in the bearing 

The flow can be described in journal bearings by using the Navier-Stokes equations and the continuity equation 
[9]. These equations can be simplified by use of the common assumptions for the hydrodynamic bearing theory 
[10]. For the numerical solution procedure these equations are usually transferred in a non-dimensional form: 
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The local inertia forces of the lubricating film are described by the left hand side of the Navier-Stokes 
equations, while the turbulent flow regime is included in the last term on the right side of the Navier-Stokes 
equations. The generalized Reynolds equation can be achieved by partial integration of the Navier-Stokes and the 
continuity equation over the lubricating gap from 0=y to Hy = and applying the common boundary conditions 
for the flow velocity [6]: 
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),(1 zR ϕ represents the convective inertia forces, while ),,(2 φϕ zR gives the inertia forces due to acceleration. 
The factors *

Pη  and fC includes the local distribution of the viscosity. These factors change in circumferential and 
axial direction. The local turbulent flow regime is included in equation (6) by the correcting factors Kx and Kz. 
Turbulent flow occurs, if the local Reynolds number ηωρ /Re Hrmixl = is bigger than the critical Reynolds 
number Recr. The factors Kx and Kz can be calculated by using empirical equations [3]. 

By taking the oil foaming and the local inertia forces into account the pure Poiseuille flow remains nearly 
unchanged in the Reynolds equation (6) in comparison to [3], while the Couette flow will be changed and 
additional source terms occur for the pressure generation in the lubricating film. These effects are not included in 
the simple DIN calculation [2], for example. 

Oil 

Cavitation area 

Pocket 

Oil 

Cavitation area 
),( zH ϕ
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For solving the Reynolds equation, the pressure at the edges of the pads is set to the ambient pressure Π0 or to 
the pressure of the hydrostatic pocket ΠT. Additional boundary conditions at the beginning or the end of the 
cavitation area are not necessary in the model shown here. The pocket pressure ΠT can be calculated by means of 
the law of mass conservation with applied flow factors for the oil supply and resistance factors of the pocket. The 
resistance factor RT of the pocket is the sum of a viscosity and density proportional resistance RT = RηT +RρT. The 
Reynolds equation is solved together with the boundary conditions, the equations for the mass balance, for the 
fluid flow, for the local film thickness and the correction factor for turbulent flow using a finite volume method 
with the improved SLOR solver [3], [6]. The two-dimensional pressure distribution ),( zϕΠ  is the result of the 
numerical solution for the steady state part of the Reynolds equation, 

Figure 2 shows a comparison between the measured and calculated pressure distributions for a pressure dam 
bearing. Significant deviations occur to the measured pressure distribution if the oil foaming and the local inertia 
forces are not considered (ALP3T [3]). Indeed, the pressure distribution, which has been calculated with 
ALP3T2Penhanced, matches quite well to the measured values by taking the local convective inertia forces into 
account. The remaining deviations can be explained by a small ovality of the split bearing bushes or a smaller 
effective clearance during the measurements. 

 
Figure 2: Pressure distribution in a pressure dam bearing 

2.3 Temperature Distribution in the bearing 

The steady state, 3D temperature distribution ),,( zyT ϕ  can be calculated in the lubricating gap by the energy 
equation for compressible flow: 
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Here, the dissipation  Φ is reduced to the most dominant velocity gradients. The approach of Falz [11] is used 
for calculating the viscosity η as a function of the temperature ( ( ) lTT −= 00 //ηη ). The turbulent flow regime is 
also included by improved heat conductivity and the eddy viscosity of the oil film.  

The Reynolds (6) and the energy equation (7) are nonlinearly-coupled by the physical properties of the oil 
(viscosity and density). Therefore both equations must be solved simultaneously in an iteration process [6]. The 
hot-cold-oil mixing in the pockets and the heat conductivity equations (for the bearing bush and the shaft) must 
also be considered. The 2D or 3D heat conductivity equations are used for the calculation of the temperature 
distribution in the bearing bush and in the shaft, respectively: 
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2.4 Bearing Characteristics 

The static bearing properties, such as bearing load, power loss or oil flow, can be calculated by integration of 
the corresponding pressure distribution, the shear stress and velocity distribution, respectively, on their 
corresponding surfaces, if the bearing profile )/),,( DBzH ϕ , the displacement of the shaft ),( γε and additional 
parameter (Ten, pen, ηen, KB, ρ, λ, α, …) are given. 

measurement [12] 
ALP3T2Penhanced 
ALP3T [3] 
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The transient bearing (Fx, Fy) load can be linearly approximated by means of stiffness and damping coefficients 
(cik, dik) for small vibrations of the shaft [2], [3], [13]: 
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With aid of these coefficients, it is possible to analyse the vibration behaviour of a rotor supported on 
hydrodynamic journal bearing in a linear approach. The stability threshold and the system damping are especially 
important. 

Dynamic coefficients are based on a perturbation of the extended generalized Reynolds equation (6) with the 
assumption, that shaft experiences only small deflections (X, Y) and velocities ),( YX &&  around the static position 
of equilibrium (ε, γ)stat. Therefore the inertia forces are neglected, as the modified Reynolds number Re* remains 
small. 

The perturbed variables are the pressure Π and the lubricating gap H, while the density and the temperature 
are not disturbed (the changes of these variables is assumed to be negligible for small perturbations). 
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Substituting these expression in equation (6) and sorting the terms according to the first perturbation order 
),,,( YXYX ′′  yields 
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All implicit dependencies of other parameters and boundary conditions have to be linearized for the solution 
of these four perturbation equations as well. This requires the application of an iterative numerical solution 
procedure. Due to the two-phase model, no additional boundary conditions are necessary at the beginning and the 
end of the cavitation areas. The four stiffness ( 3* /)2( ψηωγ Bc ikik = ) and damping coefficients  
( 3* /)2( ψηωβω Bd ikikS = ) can be calculated by integration of the pressure coefficients nq∂∂ /Π  over the whole 
bearing surface: 
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with i, k = 1, 2 and qn = X, Y, X’, Y’ for n = 1 … 4. The dynamic bearing coefficients ** , ikik βγ  depend mainly 
on the static point of equilibrium of the shaft (ε,γ)stat, the bearing profile, the function or the film-thickness and the 
bearing width ratio. 
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The transient bearing forces have to be nonlinearly calculated for high vibration amplitudes. In the here 
presented calculation method for calculating the transient bearing forces, the additional effects, which cause long 
computation times, are only taken into account by averaging. The transient bearing forces are split into two parts, 
which are proportional to the rotation and lateral movements. The bearing force corresponds to the static bearing 
force [SoD,αD]. The damping force depends linearly on the shaft moving velocity (ε’,γ’)  according to the journal 
bearing theory [3] and it can be described by the use of the damping coefficients*ikβ . The coefficients depend in 
a highly nonlinear way on the actual position of the shaft (ε,γ) in the bearing, as well as on the bearing force 
[SoD,αD]. 
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For the calculation of the bearing 

coefficients ( *,, ikDDSo βα ) with the 
program ALP3T2Penhanced, necessary 
inputs are the bearing geometry, oil 
parameters, temperature and pressure 
boundary conditions, material 
parameters as well as parameters for the 
two-phase model. The coefficients are 
tabulated as a function of the shaft 
displacement (ε,γ) for the whole 
possible shaft positions in the bearing. 
The reliability of the transient bearing 
force calculation has been proven by 
several measurements [14] on a bearing 
test rig, Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

3   Calculation Results for Hydrodynamic Journal Bearings 

3.1 Closed Bearings 

The journal bearing program ALP3T2Penhanced has been integrated into the rotor dynamics program 
MADYN 2000 [5]. A user friendly GUI (Figure 4) has been implemented in order to simplify and reduce the 
necessary input data. 

With the enhanced program ALP3T2Penhanced, it is also possible to calculate closed bearings without 
hydrostatic pockets. The oil flow through the bearing is in axial direction. 

measurement calculation 

Figure 3: Measured and calculated vibration amplitudes 
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The calculation results of a 

closed bearing are shown in 
Figure 5. The Gümbel curve is 
plotted in the upper figures. The 
shaft deflects perpendicularly to 
the load direction, which means 
the angle between the load- and 
deflection direction is 90°. This is 
due to the fact that no cavitation 
occurs is the bearing because of 
the moderate bearing load of 2 bar 
and the axial pressure difference 
of 3 bar between both axial 
bearing ends. Such bearing is 
prone to become unstable.  

In the lower figures the 
dimensioned stiffness- (k) and 
damping (d) coefficients are 
plotted. The main stiffness (22, 
33) coefficients and the cross 
damping (23, 32) coefficients are 
almost 0, whereas non-zero cross 
coupling stiffness coefficients 
(23, 32) and non-zero direct 
damping coefficients appear. The 
cross coupling stiffness 
coefficients are skew symmetric. 
This is also predicted by the short 
bearing theory.  

 
 
 

Figure 4: User-friendly GUI for ALP3T2PT for a closed bearing 

Figure 5: Gümbel curve and dynamic bearing characteristics for a closed bearing 
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3.2 Tilting Pad Bearings 

For multi-lobe and tilting pad bearings, the lubricating films are essentially coupled in the circumferential 
direction by the oil flow into and out of the pockets. Also the heat conduction in the bearing and in the shaft has 
to be taken into account. The old program ALP3T [3] calculates to high oil flows in the pocket area especially for 
multi-lobe bearing with a high relative pocket width or open pockets. This yields significant differences in the 
calculated and measured bearing temperatures due to the hot and cold oil mixture in the pockets. Remarkable 
improvements could be achieved considering the inertia forces in the lubricating film and the back-flow of oil in 
cavitation areas. 

For tilting pad bearings with limited oil flow, it is not ensured that all pads get sufficient amount of oil for a 
complete filling of the lubricating gap at the entrance of the pad. To achieve this, the oil drainage must be reduced 
as long as the hot oil substitutes the missing amount of cold oil. This important energetic coupling of the lubricating 
films was not implemented in ALP3T, so that there are significant deviations between the measured and calculated 
pad temperatures, Figure 6a. These differences are much smaller with the new oil mixture model and with 
consideration of the pad cooling, Figure 6b. 

 
Figure 6: Comparison between measured and calculated temperature distributions T(φ,z)  

The program ALP3T2Penhanced is also integrated in MADYN 2000 for nonlinear calculations, which become 
necessary among others for high unbalances. In Figure 7 the trajectories are plotted for a simple shaft supported 
in two identical 3-pad tilting pad bearings. The rotor has very large amplitude of triangular motion and the 
nonlinear behaviour appears clearly. For these operating conditions, the orbit is largely following the bearing 
geometry. By taking the pad deformation into account, the orbit increases by about 15 % compared to that without 
deformations. These curves match the calculations of Desbordes et al. ([15], Figure 9) very well. 

 
Figure 7: Journal centre orbit for a static load (30 kN) with a  

high unbalance force (50 kN) in 3-pad tilting pad bearing 

Calculation 

Measurement 

ALP3T ALP3T2Penhanced 
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For a more precise calculation considering the 3D-Temperature distribution, the turbulent flow regime, time-
dependent cavitation boundaries, the computation time increases exponentially and such a calculation of 
trajectories is limited to exceptional cases. Therefore the components of the transient bearing force ),,( *

ikDDSo βα
are precalculated at certain grid points (grey crosses in Figure 7). These grid points are automatically distributed 
by the program ALP3T2Penhanced, so that nearly 99.99% of the possible shaft deflection is covered . Moreover 
the change of the Sommerfeld number between two grid points is less than a certain factor. 

4   Calculation Results for Squeeze Film Dampers 

For a squeeze film damper, the “velocity” is ω=0. By multiplication of equation (6) with ω/ω S, setting ω=0 
and neglecting the inertia forces, only the term ∂(ρmixH)/∂φ remains on the right side of (6). In addition ωS is used 
instead of ω to get the dimensionless variables Π andφ, and there is no turbulent flow regime in the squeeze film 
damper. After perturbing equation (6) with equation (10) only the last 2 relations of equation (11) are obtained. In 
other words the squeeze film damper has only transient forces which are proportional to the vibration velocity and 
does not create any static force or stiffness unless certain design measures are taken for centring the squeeze ring. 

The Sommerfeld numbers SoV calculated with the enhanced program ALP3T2Penhanced (squeeze film damper 
with 2 phase model) are plotted in comparison to the limit values for the 2π-film (Sommerfeld boundary condition) 
and the π-film (Gümbel boundary condition), Figure 8. The eccentricity velocityε’  becomes an additional 
parameter for the pure squeezing movement (ω=0,γ’=0)  if the oil foaming is considered. The eccentricity velocity 
determines the cavitation in the squeeze film damper. The calculated SoV-values range between the asymptotical 
limit values of the π- and 2π-film for a cylindrical 360° squeeze film damper with axial oil supply. The differences 
between the SoV-values depend strongly on the eccentricity ε of the squeeze film damper for the three calculation 
models.  

The influence of the cavitation is very important for small eccentricities ε, i.e. especially for high speed journal 
bearings with low load or statically centred squeeze film dampers.  

 
Figure 8: Comparison of the calculated Sommerfeld numbers SoV(ε,ε’ )  
with Sommerfeld (2π-Film) and Gümbel (π-Film) boundary condition 

For a turbocharger with two floating ring bearings with non-rotating rings the trajectories are plotted in Figure 
9. The movement of the floating ring itself is shown in the right picture, while the relative shaft to ring vibration 
is in the left one. The calculation have been started for nominal speed with centred ring and shaft position. The 
bearing at “C-side” is statically nearly unloaded, while the other bearing has to carry the whole weight of the 
turbocharger. The shaft and the ring drop down directly after starting the calculation. The inner oil film produces 
immediately a film pressure due to the rotation of the shaft, whereas the ring must be accelerated to a certain 
velocity, so that the outer oil film can carry the mass of the ring and the shaft. As the vibration velocity of the ring 
is increased, the ring starts to centre itself. Sub-synchronous vibrations appear due to the low loading of the 
bearings.  
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Figure 9: Orbit plots of the squeeze film ring and the shaft relative to the ring in a turbocharger 

5   Conclusion 

The behaviour of bearings and squeeze film dampers is analysed for static and dynamic loading with the 
program ALP3T2Penhanced, which considers several additional effects such as oil foaming, turbulence, and 
inertia. By integrating the program ALP3T2Penhanced into the rotor dynamics program MADYN 2000, the linear 
and nonlinear vibrations of rotor–bearing–stator systems can be accurately calculated. For squeeze film dampers, 
the important centring effect due to the dynamic load can be clearly shown by nonlinear analyses with the enhanced 
program system. 
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