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MADYN 2000 Version 4.3

The following new features and improvements were introduced in version 4.3:

Improvements and New Features for Nonlinear Fluid Film Bearings
New Features for Rolling Element Bearings

General Spring Connection

Hot Spot Stability Analysis with Flexible Support

Evaluation according to API 617 8" Edition

Further Improvements
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1. Improvements and New Features for Nonlinear Fluid Film Bearings
1.1 Analysis Time

Several code improvements (improved interpolation in the field of nonlinear characteristics, improved
scaling of the fields), optimised settings for the RUNGE KUTTA solver and the use of the latest
MATLAB version 2016a have considerably reduced the analysis time for transient analyses with
nonlinear fluid film bearings. In some case the analysis is 10 times faster than in version 4.2.

This improvement facilitates the analysis of extreme cases within reasonable time (2 to 8 hours), such
as the run up of turbo-chargers with semi-floating ring bearings (= floating ring bearing with non-
rotating floating ring). The outer oil film of these bearings functions as a squeeze film damper and
does not have any load carrying capacity as long as the ring does not move. This leads to very thin
outer oil films (the ring is very close to the bearing casing), causing many iterations for each time step,
due to the high gradients of the bearing characteristics.

In the following the run up of the turbocharger in figure 1.1 with semi-floating ring bearings in figure 1.2
is shown. The assumed unbalance for the run up can be seen in fig. 1.3.
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Fig. 1.1: Turbocharger example rotor
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Fig. 1.2: Geometry semi-floating ring bearings
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Fig. 1.3: Unbalance load case for the run up according to G20

The vibration and orbit of the rings and the relative rotor vibration in the bearings are shown in figure
1.4 and 1.5. The spectrum of the vibration at the compressor wheel can be seen in figure 1.6. Figure
1.4 reveals that the ring on the heavy turbine side drops almost to a value corresponding to the
clearance of the outer film. It is centred to some extent at about 27°000 rpm, the instant when sub-
synchronous vibrations arise (also see spectrum in figure 1.6).
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Fig. 1.5: Time history and orbit of the relative rotor vibration in the bearings
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Fig. 1.6: Spectrum of the vibration at the compressor wheel

1.2 Contact Stiffness

Contact stiffness as proposed by Greenwood and Williamson' according to equation 1.1 is introduced
for all nonlinear fluid film bearings.

Pe= ¢, - evH + ¢, (1.1)
with the parameters
556.188 - 10° N/m’,

Ca =

ce = -0.5285 - 10° N/m* and
_ In(0.001)

€ = roughness’

The above values for ¢, and c. apply for steel. H is the oil film thickness. The surface roughness in ¢ is
an input in the RFB GUI (see figure 1.7).

Equation 1.1 yields a pressure distribution according to the local oil film thickness, which is added to
the fluid pressure distribution.

Introducing a contact stiffness (setting the roughness to a reasonable value >0) increases the
robustness of the analysis in case of deflections close to the bearing clearance.

' Greenwood, JA; Williamson, JBP: Contact of nominally flat surfaces. In: Proceedings of the Royal
Society of London. Series A. Mathematical and Physical Sciences, 1966, vol. 295(1442), 300-319.
http://rspa.royalsocietypublishing.org/content/295/1442/300.short
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Fig. 1.7: RFB GUI with edit field for surface roughness
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1.3 Thermal Deformation for Floating Ring Bearings with Stationary Ring (Semi-Floating)

Thermal deformation now can also be considered for floating ring bearings with non-rotating ring. For
bearings with free rotating ring it was already possible before. The deformation influences the
clearance and thus the bearing temperature. This option is available for analysis types DIN and c¢_ad

(constant adiabatic).

In order to consider the thermal deformation the method for the “Ring Speed Ratio Calculation” must

be selected accordingly in the floating ring bearing GUI (see figure 1.8).

"4/ FRB - FloatingRing (from: Station 4 Bearing Compressor) = B s
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Fig. 1.8: Floating ring bearing GUI with the method for the “Ring Speed Ratio Calculation” considering
the thermal ring deformation and GUI to define the thermal expansion coefficients
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The speed dependent temperatures and clearance change (as ratio) can be plotted from the button
“Show f(speed)’. Examples for these plots are shown in figure 1.9.
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Fig. 1.9: Temperature and clearance change (as clearance ratio) as a function of speed
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2. New Features for Rolling Element Bearings
2.1 Nonlinear Rolling Element Bearings

Nonlinear rolling element bearings are introduced. Clearance effects as well as the nonlinear Hertzian
contact force are considered. For the analysis of the nonlinear force a function of the MESYS software
is used (see htips://www.mesys.ag/?page _id=1202).

The nonlinearity of the rolling element bearings has to be specified in the transient analysis GUI
similar to other nonlinearities. Activating the check box “Nonlinear Solver” opens the GUI with a list of
rolling element bearings REB in the system (see figure 2.1). The bearings can be enabled for the
nonlinear solver.

[#] ATR - AnTRACond (from: Transient) ‘ — ‘ = | PSS ‘
Created: 18-Oct-2016 16:18:22 Modified: 18-Oct-2016 16:19:40
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) Zero Init ‘ .
R 4 5 i .
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©nit. Col  gtatic Results for Non-linear REB:
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EIG Resul 15.0¢t-2016 16:05:27 - GRAVITATION, 9 rel speeds (0.2...1.6)

)
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@ Speed(|
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Frequency = Speed Ref. Frequency [Hz]:

T SasSes

i Start Time [s] End Time [s] Time Step [s] Number of Steps
_iNon-iinear solver_D Change 0 5 2.00085¢-05 249893
I Parameters for Numerical Integration ] Calculate »

Cancel ‘ Delete | < Add ||<<| <<‘ >>‘>> ‘ Add > ‘ Exit * ‘

Fig. 2.1: TRA GUI with activated check box “Non-linear solver’ and GUI to select REB objects

Moreover a list of static analyses is shown. They are needed to define a linear damping force, which
are added to the nonlinear force from MESYS. This is described in more detail in the next chapter.

Due to nonlinear rolling element bearings especially in cases with clearance a variety of non-linear
effects may arise, which will be described more in detail in a later document.
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2.2 Damping in Rolling Element Bearings

Damping for nonlinear rolling element bearings

As mentioned above in chapter 2.1 damping forces (including moments) can be added to the
nonlinear rolling element bearing forces. These damping forces are calculated with a matrix
proportional to the linear stiffness matrix of the REB. The amount of damping is defined by a damping
ratio D. The damping matrix D then is calculated according to the following formula from the REB
stiffness matrix K:

D=22K (2.1)

o is a reference frequency.

Damping ratio and reference frequency can be defined in the GUI for the nonlinear REB (see figure
2.1). For the reference frequency the speed can be selected alternatively to a specific frequency. The
default value of a specific frequency is the nominal speed of the rotor. In order to define the linear
stiffness matrix the selection of a static analysis is necessary.

Damping force for harmonic response analysis

A damping force similar to equation 2.1 can be defined for harmonic response analyses. In this case
the reference frequency is equal to the excitation frequency. The damping ratio is defined in the rolling
element bearing GUI (see figure 2.2).

"4 REB - REBearing (from: Station 15 LAGER, AS) =] B S
Created: 18-Mar-2016 14:16:41 Modified: 18-Oct-2016 16:18:03

REBearing Title: [NpgR=lelordz g k=lord

Deep groove ball bearing

Inner Diameter: 35 mm
Cuter Diameter: 62 mm

/| Speed-dependent bearing (consider centrifugal forces)

Damping Ratio for Harmonic Analysis [ % ]
1

Axially fixed -
Edit Bearing

Cancel ‘ Delete‘ Print Exit

Fig. 2.2: Rolling element bearing GUI with the definition of the damping ratio for harmonic response
analysis
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3. General Spring Connection

General spring (6x6 stiffness and damping matrix including off-diagonals, see GUI in figure 3.1) could
so far only be used as connection to the ground. It can now also be used as a connector between
shafts. For this purpose a general spring has to be added to the system by the button “add General

Spring” in the system GUI (see figure 3.2).

4 GSP - GSpring (from: System)
Created: 10-Aug-2016 11:47:20 Modified: 10-Aug-2016 11:47:20

General Spring: | | 1 ~ | Title: Hinge

Diagonal Stiffness:
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translational |0 letl2 let+l2

k44 [N m/rad] k55 [N m/rad] k66 [N m/rad]
rotational 0 0 0

Diagonal Damping:

d11 [N sfm] d22 [N sfm] d33 [N s/m]
translational |0 0 0

rotational 0

Off-diagonal Stiffness  Off-diagonal Damping

I General Spring Connection ‘

2
d44 [N m s/rad] d55 [N m s/rad] d66 [N m s/rad] \/
0 0

Cancel Delete Print ‘ <Add | [<<| <<| =>|>>|| Add> | Exit
Fig. 3.1: GUI to define a general spring
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100

100
TLA case: --> DoF =[1 1101 1] [¥] Qverrule all Subobjects
3) Torsion - ............ e FREE ( * ) |
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Shaft 1 Type Shaft 2
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HS Shaft Gear 1 (Sun - Planets 1): Pi... Shaft 4 (Planet 2)
HS Shaft Gear 1 (Sun - Planets 1): Pi... Shaft 5 (Planet 3)
HS Shaft Gear 2 (Sun - Planets 2): Pi... Shaft 3 (Planet 1)
HS Shaft Gear 2 (Sun - Planets 2): Pi... Shaft 4 (Planet 2)
<4 1

m| »

Il

4 Gears

2 Flexible Couplings
add Planet Carrier

(. add General Spring 3

Cancel

Exit

Fig. 3.2: System GUI with overview of connections and button to open connection GUI

General springs in the system can be used as connectors, i.e. they can be selected in the connector

GUI (see figure 3.3).
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"4 CNC - Connection (from: System) EI (=] @

Created: 10-Aug-2016 11:47:26 Modified: 10-Aug-2016 11:47:39

Connection: | 1 ~ Title:

General Spring Connection 1

Left Station

SET 1 (Shaft 1): STA 7 Select
onnected Using
( GSpring Select
Right Station
SET 2 (Shaft 2): STA 1 Select
Cancel | Delete | <Add ||<<| <<| >> |>>)| Aga> | Ext |

Fig. 3.3: General spring selected as connector

4. Hot Spot Stability Analysis with Flexible Support

The hot spot stability analysis now also allows flexible stators (SBS or DBS) at the hot spot location.
The stator flexibility influences the heating and thus the stability. Until now only rigid stators were
supported.

For the example of a turbo-expander similar to the one published in http://www.delta-
js.ch/file/355/Hot_Spot Stability Expander.pdf the effect of a flexible stator is shown. The stiffness of
the stator is about twice the fluid film bearing stiffness at nominal speed. The system is shown in figure
4.1. The Campbell diagrams with rigid and flexible stator, the mode shapes in the critical speeds with
flexible stator as well as the hot spot stability charts (heat ratio curves) are shown in the following
figures 4.2 to 4.6.

The flexible support has the effect of reducing the damping in the Campbell diagram. The effect on the
hot spot stability threshold is large. The threshold with flexible stator is at considerable higher speed,
which is due to less heating (the relative displacement in the bearing with flexible stator is smaller than
with rigid stator) and the phase angles, which are more favourable regarding stability due to the
smaller damping.
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Fig. 4.1: Turbo-expander with bearing hot spots and flexible stator (SBS)
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Fig. 4.2: Campbell diagram with rigid stator
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Fig. 4.3: Campbell diagram with flexible stator
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Fig. 4.4: Shapes in the critical speeds with flexible support
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Rotor with Hot Spot (Morton Effect) - Stability Threshold for Heat Ratio
Hot Spot Analysis
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Fig. 4.5: Hot Spot Stability Chart with flexible support

5. Evaluation of Resonance Curves according to APl 617 8™ Edition

The evaluation of resonance curves (separation margins, amplification factors, maximum amplitudes)
according to API1 617 8" edition (applicable to compressors) is implemented. There are some
differences to the 7™ edition. The general standard API 684 (recommended practice) did not change
and is still similar to AP1 617 7" edition.

In AP1 617 7" edition and API 684 the following values must be determined for resonance peaks:

Nc: Speed of the resonance peak

AF: Amplification factor

SM: Separation margin

SMreq: Required separation margin according to API
Ac: Vibration peak in the resonance

Al: Vibration limit according to API

Al/Ac:  Ratio of the vibration limit to the resonance peak

Required separation margins are calculated as follows:
For critical speeds below minimum speed: SM,., = min {17 (1 -1 ); 16} (5.1)

AF-1.5

For critical speeds above maximum speed: SM,., = min {10 +17 (1 - AFil 5); 26} (5.2)

The following changes are introduced in API 617 8" edition:

For the required separation margin SM only the formulas apply. The values 16 and 26, respectively,
are not used any more. This means, that for very high AF the limits are 17 and 27 instead of 16 and
26.

Instead of Ac the maximum amplitude A, has to be evaluated. This evaluation has to be done in the
speed range only, in contrast to Ac, which had to be evaluated for every resonance. A,.x must not
necessarily be the amplitude in a resonance; it can be the amplitude at the boundaries of the speed
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range. The maximum amplitude has to be compared to the allowable amplitude, which is calculated as
follows:

25.4 127000
A, =min Zz—'4,—N [m] (5.3)

2

The limitation to 22—'4 um, which comes into effect for low speed, is new in the 8" edition.

The scaling factor Scc in the 8" edition replaces the ratio A,/Ac of the 7" edition. It is calculated as
follows:

Sce = min {AAI ,6} (5.4)

max

The scaling factor must be larger than 1.

The evaluation of a resonance curve according to the 8" edition is shown in the following figure.

Steam Turbine
Harmonic Response Analysis
Load case: Unbalance 1 (Gl Middle)
Analysis: 24-Nov-2015 11:29 - 204 rel.speeds (0.2...1.5), bearing loads from SAN, sync.
Result Type: Bending displacement (SBS Rel.Vibration)

Stru 3 ing: 0 ¢ —— Shaft nominal speed 7413 rpm
Struct. Damping: 0 = SFT 1 STA 11 --- Steam Turbine: Station 11 (NDE Bearing): SBeaSup (Pedestal for Governor Side Bearing)
——— SFT 1 STA 63 --- Steam Turbine: Station 63 (DE Bearing): SBeaSup (Pedestal for Governor Side Bearing)

T T T

6L N_c = 3319 pm ‘ i
AF =7.44
— 5 SM =-36.0 % -
g SM_req=14.1% A_max = 2.87 pm
=4 A_c=333pum A_1=12.70 ym
8 " S cc=4.43
23 e i
g
<2
15 4
| I | I I I
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
180 T T T T T T
S 90F -
2 5L _
c
< oL 4
[}
@ 45 _
2
o g0 -
135 = I I I I 1 1 I I
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Rotor Speed [rpm] MADYN 2000 v.4.3.0

Fig. 5.1: Evaluation of a resonance curve according to API 617, 8" edition
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6. Further Improvements
6.1 Spectrograms

Spectrograms have been improved using the latest MATLAB functions and recommendations.
Previously own functions were used for the correction of windowing function (Hanning). The
spectrums now are much smoother as can be seen for example in figure 1.6.

6.2 Compact Mode Shape Plots for Systems with Shaft in Shaft Connections

The compact mode shape plots for systems with shaft in shaft connections have been improved. All
rotors with a common axis are shown in the same shape plot. In figure 6.3 the shapes in the critical
speeds for the system in figure 6.1 with two counter-rotating shafts is shown. The associated
Campbell diagram can be seen in figure 6.2.
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Fig. 6.1: System with shaft in shaft connection (two counter-rotating shafts)
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Fig. 6.2: Campbell Diagram of the system in fig. 6.1
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Fig. 6.3: Shapes in the critical speed of the system in fig. 6.1
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Compact mode shape plots of lateral, torsional,
case a mode is coupled the percentage of each

-17 -

axial coupled systems have been improved as well. In
component is shown, based on the maximum

deflections of each component. For the bending the maximum among all bending coordinates (lateral
displacement in direction 2,3 and rotational deflection 5,6) is considered. The bending shapes are
shown in the usual way, if the shape is at least 50% bending. If the percentage of the bending is

above 95% the mode is considered as dominati

ng bending and the percentage of other component is

not shown. The text with the percentage of each component can be removed by clicking on it.

For the system in figure 6.4, which is a demo-example and comes with the installation package, some

coupled modes in the range of 35 to 90Hz are s
full 3-dimensional shape plot (figure 6.6).

hown in the compact bending form (figure 6.5) and as
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Fig. 6.4: System with gear (lateral, torsional coupled)
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Fig. 6.5: Compact bending mode shape plot (range 35 to 90Hz) of the coupled system in fig. 6.4
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Fig. 6.5: Full 3-D mode shape plots (range 35 to 90Hz) of the coupled system in fig. 6.4
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