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Hot Spot Stability Analysis available in MADYN 2000 Version 4.2 
Friction on the shaft surface can cause vibration-driven heat input to the shaft and thus hot spots. The 
resulting thermal bending can lead to unstable vibrations under certain circumstances (see for 
example /1/, /2/ and /3/). 

The hot spot stability analysis is the main new feature in version 4.2 of MADYN 2000. It is offered as a 
new module. The implemented method (see among others /1/) has been used by DELTA JS for 
almost 20 years, by means of special in-house software, which was combined with MADYN classic. A 
lot of experience in numerous projects has been gained over the years and the method has been 
continuously refined.  

The module offers the utmost flexibility. It allows handling practically any hot spot mechanism driven 
by vibration. 

For hot spots caused in fluid film bearings (Morton Effect) the differential heating is estimated by 
methods based on the bearing power losses, which can be calculated by different methods including 
the ALP3T CFD analysis. In a further step the implementation of a specialized CFD code considering 
the exact perturbation due to any orbit and including the numerical analysis of the differential heat 
dissipation is planned (see /4/). This method is currently validated against DELTA JS’ vast experience. 

Moreover, past experience has shown, that hot spots cannot be considered isolated, because they 
influence each other. For example in case of a shaft with two overhangs and two bearings with 
potential Morton effect, the hot spot in both bearings must be considered at the same time. Otherwise 
the stability thresholds are not accurate. DELTA JS has analysed examples with 38 hot spots 
considered simultaneously in one model. The hot spots in that case were caused by brush seals.  

The whole process of assessing the hot spot sensitivity of a rotor system in MADYN 2000 is described 
in the following. 
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1. Modelling a Hot Spot HSP 

Hot spots can arise in fluid film bearings (in this case the phenomenon is called Morton effect), at slip 
rings of electric machines, at brush seals and due to light contact. Other effects, such as eddy current 
losses in magnetic bearings, can lead to hot spots as well. 

The model of the hot spot is based on Kellenberger. It requires the definition of a heat input factor p 
and a heat dissipation factor q (see /1/, and references there). 

Parameters of a hot spot are defined in a special object “Hot Spots” HSP. The objects are added to 
the shaft stations, where the hot spots arise. A station can have one hot spot, thus shafts and systems 
several hot spots. 

Two types of hot spots can be defined:  

• User-Defined  
• Morton Effect 

For user defined hot spots, all parameters must be defined by the user. This allows modelling a large 
variety of causes for hot spots (friction at slip rings, brush seals …). 

The Morton Effect type is limited to hot spots caused by the friction in fluid film bearings. It requires 
that a fluid film bearing RFB is at the same station. All parameters for the Morton Effect type are 
automatically determined, except the angle ΦT (see following sub-chapters 1.1 and 1.2). 

It should be noted that the Morton Effect can also be modelled as User-Defined hot spot. 

In the following a model with hot spots in both fluid film bearings is shown. Note the new symbol for 
hot spots. 

 

 
Fig. 1.1: Example with two bearing hot spots 
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1.1 User Defined Hot Spot 

A hot spot HSP is defined by the following parameters: 

1. Axial length LT of the area with cross-sectional temperature difference.  
2. In case of superimposed sections one section subject to the temperature difference must be 

selected. 
3. Type of heating: The heat input can be proportional to the acceleration, velocity or displacement 

of a station, i.e.  ∼𝑥̈, ∼𝑥̇, ∼𝑥. 
4. Proportionality factor p for the heat input. This factor can be a constant or a function of speed. 

The input must be defined for β=1m/K, with β as the ratio between cross sectional temperature 
difference and the thermal deflection at a reference point. MADYN 2000 automatically chooses 
the hot spot location as the reference point (also see chapter 2). 

5. Proportionality factor q for the eliminated heat. This factor can be a constant or a function of 
speed. 

6. Angle ΦT between high spot (direction of acceleration, velocity or displacement) and maximum of 
cross sectional temperature difference (see figure 1.2). Either a range of speed-independent 
angles or one speed dependent angle can be defined.  

The GUI to define the parameters can be seen in figure 1.3.  

It is assumed, that the cross sectional temperature difference along the length LT is constant. More 
than one section on each side of the hot spot station can be subject to the temperature difference, 
depending on LT (see figure 1.4).  

In case sections are only partially affected, the load at the left and right station of the section due to 
the temperature difference is multiplied by a factor λ =

𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 𝐻𝐻𝐻 𝑆𝑆𝑆𝑆

𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆
.  

The definition of p and q is not obvious, but is kept deliberately open, in order to allow the utmost 
flexibility. In chapter 5 formulas for their definition are given for some cases. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2:  Definition of ΦT (The angle ΦT between high spot and hot spot is averaged for one revolution 
of the shaft. ΦT is positive in the direction of rotation. The angle in the figure is the angle for 
one instant.) 
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Fig.1.3: GUI to define a hot spot 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 1.4: Affected sections of a hot spot 
 

 

1.2 Morton Effect 

For the “Morton Effect” analysis (hot spot caused by fluid film bearings) the heat input factor and heat 
dissipation factor are calculated automatically from the parameters of the bearing. Details of how they 
are determined are given in chapter 5.1.  

The GUI to define a hot spot according to the Morton Effect is shown in figure 1.5.  

The only parameter, which can be defined manually, is the hot spot angle ΦT (see figure 1.2). It is 
known from measurements (see for example De Jongh and Moron referenced in /1/) that this angle 
can deviate from zero and tends to be negative. In order to see its influence a variation of angles can 
be input. 
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Fig.1.5: GUI to define a hot spot according to the Morton Effect 

 

The differential heat input is calculated from the bearing power loss. For this calculation two options 
are offered: 

1.) Simplified Power Loss: The power loss is calculated analytically from a simple formula applicable 
to a rotor centred in a cylindrical bearing with constant viscosity. 

2.) Power Loss from ALP3T results: The power loss is calculated from a CFD analysis (ALP3T) 
considering the eccentricity of the journal in the bearing due to load and the accurate bearing 
geometry. The temperature distribution and variable viscosity can be considered as well 
depending on the selected type of analysis for the bearing characteristics in the RFB object. 

 

Estimation of the factors according to option 1 (simplified Power Loss): 

The assumptions for this option are summarized in chapter 5.1. The analysis gives a correct order of 
magnitude for the heat input and the heat dissipation. 

The required parameters are: 

Bearing width B  
Bearing diameter D 
Rotor speed Ω 
Oil viscosity according to the mean temperature η 
Radial bearing clearance ∆r 
Density of the affected shaft sections ρ 
Specific heat capacity of the affected shaft sections c 
Heat transfer coefficient between oil and rotor α =  2 𝑁𝑁 λ𝑂𝑂𝑂

𝛥𝛥
, which requires 

Nusselt number 𝑁𝑁 = 2.6 
Thermal conductivity of the oil λOil 



 
- 6 - 

MADYN 2000 Version 4.2, Hot Spot Stability Analysis  March 2016   

With these parameters the factor q  and the heat ratio 𝑝Ω
𝑞

 (→ factor p) can be calculated as follows 
(also see /1/ and chapter 5.1): 

𝑞 = 3 α 𝐴
𝑚 𝑐

 (1.1) 

𝑝Ω

𝑞
= 𝑢2η β

𝛥𝛥2 α
 (1.2) 

with 𝐴 = 𝜋 𝐷 𝐵 as the shaft surface of the bearing and 𝑢 = 𝐷
2

 Ω as the circumferential shaft surface 
speed. 

The axial length LT of the area with cross-sectional temperature difference (fig. 1.4) is set equal to the 
bearing width. 

 
Estimation of the factors according to option 2 (accurate Power Loss from ALP3T results): 

In this option an accurate power loss calculated by the ALP3T CFD analysis is used instead of a 
simplified formula (see chapter 5.1). This results in the following formula for the heat ratio: 

  𝑝Ω
𝑞

= 𝑃β
𝛥𝛥 α

  , (1.3) 

with P as the bearing power loss from ALP3T.  

It should be noted here, that this method leads to an overestimation of the heat input for the hot spot in 
case of turbulence in a bearing, which is considered in a variable adiabatic ALP3T analysis. 

 
Specialized CFD analysis (planned for near future) 

The analysis with estimated factors can be used to assess the stability with respect to p and q, i.e. it 
can be analysed at which heat ratio 𝑝Ω

𝑞
 or at which heat input factor p the system becomes unstable 

(also see /1/, chapter 3 and 4). 

The specialized CFD analysis then can be used in a further step to calculate the actual p and q factors 
and the actual heat ratio 𝑝Ω

𝑞
, respectively (see /4/). It also provides the hot spot angle ΦT. This analysis 

considers the accurate bearing geometry, the static journal position in the bearing, the accurate 
perturbation of the power losses by the orbit for the differential heat input and the numerically 
calculated heat dissipation (instead its analysis by a heat transfer coefficient). The method is more 
accurate than option 2 regarding the perturbation by the orbit and the heat dissipation. 

The method is applied only to bearings, which were calculated according to DIN (ALP3T_DinTab) or 
with a variable adiabatic analysis (ALP3T_v_ad). 

The following parameters and assumptions are used: 

Constant viscosity according to the mean temperature in case of DIN 
Variable viscosity according to the 3-dimensional temperature distribution in case of DIN and v_ad 
Density of the oil according to mean (for DIN) or inlet temperature (for v_ad) 
Heat capacity of the oil according to mean (for DIN) or inlet temperature (for v_ad) 
Thermal conductivity of the oil according to mean (for DIN) or inlet temperature (for v_ad) 
Density of the affected shaft sections ρ 
Specific heat capacity of the affected shaft sections c 
Heat conductivity of the shaft 51 W/(m K) 
Ambient temperature 20oC (for heat dissipation through shaft) 
Heat transfer coefficient for heat dissipation through shaft 115 W/(m2 K) 
No heat dissipation through the pads 
Orbit of the shaft at the hot spot location 
Static position of the journal at the hot spot location 
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2. Thermal Deformation Analysis 

The “Thermal Deformations Analysis” is required for a hot spot stability analysis (see chapter 3).  

The analysis requires that any shaft in the system has defined hot spots. No loads must be defined. 
The hot spots in the system are selectable for the analysis. The GUI to define the analysis can be 
seen in the following figure. 

 
Fig. 2.1: GUI to define the thermal deformation analysis (called from “Static An. Param.” pane) 

 
The purpose of the analysis is to calculate the thermal deformation for 1oC cross sectional tempera-
ture difference in the area of each selected hot spot (along the length LT, see figure 1.4). The analysis 
yields the parameter β (see chapter 1), which is the thermal deformation at a reference point (the hot 
spot location) per cross sectional temperature difference.  

The deformation shall apply for the free shaft. Since a free shaft does not allow a static analysis, 
because of the singularity of the stiffness matrix, some boundary conditions have to be applied, which 
do not cause any constraint forces, i.e. each shaft must be statically determined (not overdetermined). 
This is done automatically, by clamping each affected shaft without bearings and supports at a suited 
station. 

The thermal deformation for a hot spot in bearing 2 of the example in figure 1.1 is shown in figure 2.2. 

 
Fig.2.2: Thermal deformation for a hot spot in bearing 2 (example in figure 1.1) 
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3. Hot Spot Stability Analysis 

The hot spot stability analysis can be carried out, if a system contains one or several hot spots. It is a 
similar analysis to a Campbell diagram, i.e. it calculates eigenvalues and natural modes as a function 
of speed. The system, which is solved for eigenvalues, is extended by the thermal equations for the 
hot spots (see /1/). The results consisting of the complete set of eigenvalues are filtered to find only 
the eigenvalues, which are caused by the hot spot. They are characterized, by their frequency, which 
is close to the rotor speed, and their damping ratio, which is low or negative, since their real part is in 
the order of magnitude of –q (with q as the factor for heat dissipation). 

The filtered hot spot eigenvalues and mode shapes represent the response of the system to the 
thermal bending of the shaft. A positive real part of an eigenvalue (→ negative damping ratio) means 
that the response is unstable.  

The GUI to define the parameters for the hot spot analysis can be seen in figure 3.1.  

 

 
Fig. 3.1 GUI for the hot spot analysis 

 

Most of the hot spot analysis parameters are similar to a Campbell diagram. They are: 

1. The static load of RFBs, FRBs and REBs.  
2. In case RFBs with matrices for non-synchronous characteristics to determine transfer functions 

TFU are present, the button “as TFU” is active. It allows specifying the use of transfer functions 
instead of the synchronous stiffness and damping. Bearings, for which transfer functions are used, 
are marked with (T) in the list of RFBs. 

3. In case dynamic bearing supports DBS are present a check box allows to consider them, i.e. all 
SBS for which DBS have been defined are substituted. The check box can only be activated if 
polynomials of the transfer functions were created or state space matrices are present.  
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4. A check box allows the determination of the critical speeds from the complete set of eigenvalues 
before filtering the hot spot eigenvalues. They can be used in the result plots to assess the hot 
spot stability (see chapter 4). In this case a frequency range and damping ratio can be defined for 
filtering the modes to be considered.  

5. Another check box “Calculate Stability Threshold for Heat Ratio” checks, if all hot spots in the 
system are of the same type and have the same p (for the actual β) and q values for the added 
and dissipated heat, since some result plots are only available, if this condition is fulfilled (also see 
next chapter).  

6. The static analysis with the thermal deformations. 

In case all hot spots are of the same type  and have same p (for the actual β) and q factors the 
threshold for the stability of each hot spot can be calculated by a common dimensionless heat ratio 
𝑝Ω
𝑞

 (for displacement type),  𝑝Ω2

𝑞
 (for velocity type) or 𝑝Ω3

𝑞
 (for acceleration type). The threshold is 

extrapolated from the real part of the hot spot eigenvalue and real part for p=0, which is –q.  

The equality of p and q is checked with a tolerance of 10%. If the values are equal within this 
tolerance, they are treated as equal and the mean value is used for the heat ratio. 

In case the hot spots are different a second eigenvalue analysis is carried out with all p values 
multiplied by 1.1. The two sets of results allow calculating thresholds for each hot spot mode. 

 

4. Plots to Assess the Hot Spot Stability  

The GUI to call result plots for the assessment of the hot spot sensitivity of a system is shown in figure 
4.1. There are plots for the stability threshold and plots directly based on the eigenvalues. 

 

 
Fig. 4.1: GUI to call plots for results of a hot spot analysis 
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4.1 Plots for the Stability Threshold 

The following diagrams are offered for the stability threshold: 

• Plot for the “Stability Threshold Factor” 
• Plot for the “Stability Threshold for the Heat Ratio” 

The plot for the “Stability Threshold Factor” can always be applied, even for different hot spot types 
and p / q factors for the heat input / dissipation. It is the factor by which existing p values must be 
multiplied in order to push the most unstable eigenvalue (eigenvalue with the larges real part) to the 
stability threshold (real part of the eigenvalue zero). A factor smaller than 1 means, that the system 
with the existing p and q values is unstable, whereas a factor larger than 1 means, it is stable. The 
threshold is at a factor of 1.  

An example of such a plot for the system in figure 1.1 is shown in figure 4.2. The example has 2 hot 
spots and the lowest threshold factor is determined by either of the 2 resulting hot spot modes. The 
stability threshold factor is below 100% for speeds higher than 16’500rpm. The system then is 
unstable. 

The plot for the “Stability Threshold for the Heat Ratio” requires equal p and q factors (within a 
tolerance of 10%) for the added and dissipated heat of all hot spots in the system. The stability 
threshold of all hot spot modes then can be plotted as a common dimensionless heat ratio 𝑝Ω

𝑞
 (for 

displacement type), 𝑝Ω2

𝑞
 (for velocity type) or 𝑝Ω3

𝑞
 (for acceleration type). The actual heat ratio can also 

be selected to be shown in the same plot. This heat ratio is either calculated from the input p and q 
values, or in case of the Morton effect from equation 1.2 or 1.3 depending on the used option for the 
heat input calculation. Additionally, for the Morton effect an even more accurate ratio calculated with a 
specialized CFD analysis (see /4/) can be shown (planned for the near future). 

In figure 4.3 a plot with the stability threshold for the heat ratio is shown together with the actual heat 
ratio for the same example as in figure 4.2. It can be seen, that hot spot mode 2 has a lower threshold 
up to 29'000rpm and that the actual heat ratio is higher than the threshold for speeds higher than 
16’500rpm, which is in agreement with the threshold speed in figure 4.2. 

The shapes associated with the 2 hot spot modes at nominal speed can be seen in figure 4.4. They 
represent the response to the thermally bent shaft relative to the unbent shaft. 

 
4.2 Plots directly Derived from Eigenvalues 

Plots derived from the filtered hot spot eigenvalues are: 

• Hot Spot Frequency Difference 
• Real Part of Eigenvalue 

These plots are available for any p and q factors. The plot with the frequency difference and the real 
part of the eigenvalue for the same example as in the previous figures is shown in figure 4.5. 

The “Hot Spot Frequency Difference” is the difference to the rotor speed. It corresponds to the 
frequency the hot spot is moving on the rotor. In case of a positive frequency difference the hot spot is 
moving in the same direction as the speed and in case of a negative difference against the rotor 
speed. A phase angle change in a measurement will be accordingly. The frequency difference 
corresponds to the frequency of the rotating phase angle, which can normally be observed when 
measuring the phenomenon.  

The “Real Part of Eigenvalue” tells, if the system is stable or unstable with the p and q factors for the 
heat input and the heat dissipation as they were used in the analysis. For a positive real part the 
system is unstable. 
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In case all hot spots have a common q factor, this factor can be included in the plot. In case any real 
part is smaller than –q it means, that the hot spot cannot lead to instability even for very large heat 
input (large p factor). At speeds larger than 29’000rpm this is the case for the real part of hot spot 2. In 
the plot for the stability threshold for the heat ratio the threshold is infinite at these speeds. 

 

Fig. 4.2: Plot for the stability threshold factor 

 

 

Fig. 4.3: Plot for the stability threshold of the heat ratio 𝑝Ω
𝑞
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Fig. 4.4: Shapes of the hot spot modes at nominal speed 17’700rpm 
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Fig. 4.5: Plot with frequency difference (to speed), the real part and the common q factor 
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5. Heat Input and Heat Dissipation Factors for the Hot Spot Stability Analysis 
5.1 Hot Spot Caused by Fluid Film Bearings (Morton Effect) 

Analysis with the heat input from a simplified analytical formula for the bearing power loss 
 
The simplifying assumptions for this estimation of the p, q factor are as follows: 
 
The journal orbit is a synchronous circle. 
The radial gap around the circumference is constant. 
The circumferential distribution of the added heat due to the vibration is a sinus shape. The maximum 
is at the high spot of the shaft. 
For the eliminated heat distribution the same applies as for the added heat. 
The axial distribution of the temperature in the journal is constant. 
The journal ends are adiabatic. 
The complete sinus shaped friction power due to the vibration enters the shaft (not the oil). 
 
Denotations: 
 
A surface area of the journal surrounded by oil 
∆r radial bearing clearance 
c specific heat capacity of the shaft material 
m mass of the journal 
p proportionality factor for the added heat 
P power loss in the bearing 
q proportionality factor for the eliminated heat  

.
Q∆  added heat due to the vibration 

 
u circumferential speed of the shaft 
x radius of the circular shaft orbit 
xT thermal deflection 
 
Θ cross sectional temperature difference 
α heat transfer coefficient in the bearing 
β ratio of the thermal deflection in the bearing to the cross sectional temperature difference 
radial bearing clearance 
η oil viscosity 
Ω shaft speed in rad/s 
 
Thermal equation for the cross sectional temperature difference Θ  in the journal: 

Κ=Θ+Θ κ
.

 (5.1.1) 

with 

mc
Aακ 3

= , (5.1.2) 

.

2
3 Q
mc

∆=Κ
π

 (5.1.3) 

Thermal equation for the thermal bending of the journal according to Kellenberger : 

TT qxxpx −Ω=
.

 (5.1.4) 
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The relation between xT and θ is: 
Θ= βTx  (5.1.5) 

(5.1.5) substituted into (5.1.4) yields: 

xpq
β
Ω

=Θ+Θ
.

 (5.1.6) 

Comparing (5.1.6) and (5.1.1) considering (5.1.2) and (5.1.3) yields: 
 

mc
Aq α3

= , (5.1.7) 

.

2
3 Q
mc

xp
∆=

Ω p
β

 (5.1.8) 

(5.1.7) and (5.1.8) yield: 
 

Ax
Q

q
p

α
βp

2

.
∆

=
Ω

 (5.1.9) 

For a bearing and heating with the mentioned simplifications the added heat can be estimated as 
follows: 
 

r
xPQ

∆
=∆

π
2.

, (5.1.10) 

with 

r
AuP

∆
≈

η2
 (5.1.11) 

Equation (5.1.10) hereby represents the perturbation of the power losses by the vibration on a circular 
orbit. In equation (5.1.11) the power loss of a cylindrical unloaded bearing is used as an estimate of 
the real power loss. 
 
(5.1.10) and (5.1.11) substituted into (5.1.9) yields: 
 

α
ηβ

2

2

r
u

q
p

∆
=

Ω
 (5.1.12) 
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Analysis with the heat input from the bearing power loss calculated accurately by a CFD analysis 
(ALP3T) 
 
In equation (5.1.10) we can use the accurately calculated power loss instead the power loss estimated 
from an unloaded cylindrical bearing according to equation (5.1.11). This power loss considers the real 
bearing load and the real bearing geometry. Substituting (5.1.10) directly into (5.1.9) yields 
 

Ar
P

q
p

α
β

∆
=

Ω
 (5.1.13) 

 

The power loss now is accurately calculated, but the perturbation of the power loss represented by the 
factor of 2 𝑥

𝜋 𝛥𝛥
 in equation (5.1.9) is still an approximation. This factor assumes a uniform perturbation 

around the circumference, which does not apply for the most bearings. Nevertheless it is a very good 
approximation, as experience from numerous projects proves. 
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5.2 Hot Spot Caused by Generator Slip Rings 

In the following the estimation of the factors for the added and dissipated heat for a generator slip ring 
is described (see /3/). 
 
Assumptions for the estimation: 
 
The slip ring orbit is a synchronous circle. 
The circumferential distribution of the added heat due to the vibration is a sinus shape. The maximum 
is at the high spot of the shaft velocity orbit. 
For the eliminated heat distribution the same applies as for the added heat. 
The axial distribution of the temperature in the slip ring is constant. 
The slip ring is adiabatic. 
The complete sinus shaped friction power due to the vibration enters the ring. 
The thermal bending of the slip ring is completely transmitted to the shaft. 
 
Denotations: 
 
Ra outer radius of the slip ring 
Ri inner radius of the slip ring 
γ Ri/Ra 
B width of the slip ring seat 
c specific heat capacity of the shaft material 
ρ density of the slip ring material 
p proportionality factor for the added heat 
q proportionality factor for the eliminated heat 
F contact force of brushes 
µs friction coefficient between brush and shaft 
µh friction coefficient between brush and holder 
u circumferential speed of the shaft 
Ω shaft speed in rad/s 

.
Q∆  added heat due to the vibration 

α heat transfer coefficient of the slip ring to ambience 
 
x radius of the circular shaft orbit 
xT thermal deflection 
β ratio of the thermal deflection at the slip ring to the cross sectional temperature difference 
 
Thermal equation for the cross sectional temperature difference Θ  in the journal: 

Κ=Θ+Θ κ
.

 (5.2.1) 

with 

)1(
6

3γρ
ακ

−
=

cRα

, (5.2.2) 

.

32 )1(2
3 Q
cBRa

∆
−

=Κ
γρ

 (5.2.3) 
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Thermal equation for the thermal bending of the slip ring for the case of a heat input proportional to the 
vibration velocity (inspired by Kellenberger) : 

TT qxxpx −Ω=
..

 (5.2.4) 

The relation between xT and θ is: 
Θ= βTx  (5.2.5) 

(5.2.5) substituted into (5.2.4) yields: 
..
xpq

β
Ω

=Θ+Θ  (5.2.6) 

Comparing (5.2.6) and (5.2.1) considering (5.2.2) and (5.2.3) yields: 

)1(
6

3γρ
α

−
=

cR
q

α

, (5.2.7) 

.

32

.

)1(2
3 Q
cBR

xp

a

∆
−

=
Ω

γρβ
 (5.2.8) 

(5.2.7) and (5.2.8) yield: 

.

.

4 xBR

Q
q

p

aa

β∆
=

Ω
 (5.2.9) 

The heat input 
.

Q∆ caused by the variation of the contact force due to the friction in the brush holder 
can be expressed as follows: 

u
x

xFQ hs µµ 2
^

.
.

Ω
=∆  (5.2.10) 

Substituting (5.2.10) into (5.2.9) yields 
 

^

22

4 xB

F
q

p hs

α

βµµ Ω
=

Ω
  (5.2.11) 
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5.3 Hot Spot Caused by Brush Seals 

In the following the estimation of the factors for the added and dissipated heat for brush seals is 
described. 
 
Assumptions for the estimation: 
 
The circumferential distribution of the added heat due to the vibration is a sinus shape. The maximum 
is at the high spot of the shaft. 
For the eliminated heat distribution the same applies as for the added heat. 
The resulting temperature difference in the shaft is sinus shaped.  
An effective axial length subject to a temperature difference is assumed. In this area the temperature 
difference is assumed as constant. 
 
Denotations: 
 
A surface area along the length subject to a temperature difference 
c specific heat capacity of the shaft material 
m mass of the journal along the length subject to a temperature increase 
p proportionality factor for the added heat 
P friction power 
q proportionality factor for the eliminated heat  

.
Q∆  added heat due to the vibration 

k contact stiffness between brush and rotor 
 
u circumferential speed of the shaft 
x radius of the circular shaft orbit 
xT thermal deflection 
 
Θ cross sectional temperature difference 
α heat transfer coefficient of the rotor surface 
β ratio of the thermal deflection to the cross sectional temperature difference 
Ω shaft speed in rad/s 
µ friction coefficient between brush and rotor 
 
Thermal equation for the cross sectional temperature difference Θ : 

Θ̇ + κΘ = Κ  (5.3.1) 
with 

κ = 3α𝐴
𝑚𝑚

 (5.3.2) 

Κ = 3𝜋
2𝑚𝑚

𝛥𝑄̇ (5.3.3) 

Thermal equation for the thermal bending of the journal according to Kellenberger : 

𝑥𝑇̇ = 𝑝Ω𝑥 − 𝑞𝑥𝑇 (5.3.4) 

The relation between xT and θ is: 

𝑥𝑇 = βΘ (5.3.5) 
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(5.3.5) substituted into (5.3.4) yields: 

Θ̇ + 𝑞Θ = 𝑝Ω

β
𝑥 (5.3.6) 

Comparing (5.3.6) and (5.3.1) considering (5.3.2) and (5.3.3) yields: 

𝑞 = 3α𝐴
𝑚𝑚

.  (5.3.7) 

𝑝Ω
β
𝑥 = 3𝜋

2𝑚𝑚
𝛥𝑄 ̇  (5.3.8) 

(5.3.7) and (5.3.8) yield: 

𝑝Ω
𝑞

= 𝜋 𝛥𝑄̇ β
2 𝑥 α 𝐴

 (5.3.9) 

The added heat can be calculated as follows: 

𝛥𝑄̇ = 𝑘 𝑥 µ 𝑢   (5.3.10) 

Substituting (5.3.10) into (5.3.9) yields the ratio of added to eliminated heat: 

𝑝 Ω
𝑞

= 𝜋 𝑘 µ 𝑢 β
2 α 𝐴

 (5.3.11) 

 

 

 

 


